Artificial Intelligence for Fast and Accurate 3-Dimensional Tooth Segmentation on Cone-beam Computed Tomography

分割 人工智能 锥束ct 计算机科学 标准差 计算机视觉 Sørensen–骰子系数 特征(语言学) 模式识别(心理学) 图像分割 计算机断层摄影术 数学 医学 放射科 统计 哲学 语言学
作者
Pierre Lahoud,Mostafa EzEldeen,Thomas Beznik,Holger Willems,André Ferreira Leite,Adriaan Van Gerven,Reinhilde Jacobs
出处
期刊:Journal of Endodontics [Elsevier BV]
卷期号:47 (5): 827-835 被引量:144
标识
DOI:10.1016/j.joen.2020.12.020
摘要

IntroductionTooth segmentation on cone-beam computed tomographic (CBCT) imaging is a labor-intensive task considering the limited contrast resolution and potential disturbance by various artifacts. Fully automated tooth segmentation cannot be achieved by merely relying on CBCT intensity variations. This study aimed to develop and validate an artificial intelligence (AI)-driven tool for automated tooth segmentation on CBCT imaging.MethodsA total of 433 Digital Imaging and Communications in Medicine images of single- and double-rooted teeth randomly selected from 314 anonymized CBCT scans were imported and manually segmented. An AI-driven tooth segmentation algorithm based on a feature pyramid network was developed to automatically detect and segment teeth, replacing manual user contour placement. The AI-driven tool was evaluated based on volume comparison, intersection over union, the Dice score coefficient, morphologic surface deviation, and total segmentation time.ResultsOverall, AI-driven and clinical reference segmentations resulted in very similar segmentation volumes. The mean intersection over union for full-tooth segmentation was 0.87 (±0.03) and 0.88 (±0.03) for semiautomated (SA) (clinical reference) versus fully automated AI-driven (F-AI) and refined AI-driven (R-AI) tooth segmentation, respectively. R-AI and F-AI segmentation showed an average median surface deviation from SA segmentation of 9.96 μm (±59.33 μm) and 7.85 μm (±69.55 μm), respectively. SA segmentations of single- and double-rooted teeth had a mean total time of 6.6 minutes (±76.15 seconds), F-AI segmentation of 0.5 minutes (±8.64 seconds, 12 times faster), and R-AI segmentation of 1.2 minutes (±33.02 seconds, 6 times faster).ConclusionsThis study showed a unique fast and accurate approach for AI-driven automated tooth segmentation on CBCT imaging. These results may open doors for AI-driven applications in surgical and treatment planning in oral health care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
Owen应助Brot_12采纳,获得30
2秒前
3秒前
研友_VZG7GZ应助那年的伟哥采纳,获得10
3秒前
wanci应助蝌蚪采纳,获得10
4秒前
传统的纸飞机完成签到 ,获得积分10
5秒前
徐洋发布了新的文献求助10
5秒前
玖Nine发布了新的文献求助10
5秒前
畅快慕蕊发布了新的文献求助10
7秒前
7秒前
balabala发布了新的文献求助10
8秒前
9秒前
李健的小迷弟应助TJJ采纳,获得10
10秒前
10秒前
Orange应助最佳采纳,获得10
10秒前
小天狼星完成签到,获得积分10
11秒前
梧桐完成签到,获得积分10
15秒前
17秒前
kgf发布了新的文献求助10
17秒前
李健应助小DRA采纳,获得10
20秒前
量子星尘发布了新的文献求助10
23秒前
文静煜城完成签到 ,获得积分10
25秒前
Liufgui应助橘子采纳,获得20
26秒前
大秦完成签到,获得积分10
29秒前
NexusExplorer应助徐洋采纳,获得10
29秒前
33秒前
34秒前
积极的沂完成签到,获得积分10
36秒前
大个应助好想睡大觉采纳,获得10
37秒前
小郭子发布了新的文献求助10
37秒前
Mr.Jian完成签到,获得积分10
38秒前
素简发布了新的文献求助10
39秒前
博修发布了新的文献求助10
40秒前
41秒前
众筹昵称完成签到,获得积分10
43秒前
正好完成签到,获得积分10
45秒前
TJJ发布了新的文献求助10
45秒前
素简完成签到,获得积分10
46秒前
OKOK发布了新的文献求助10
46秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979648
求助须知:如何正确求助?哪些是违规求助? 3523618
关于积分的说明 11218147
捐赠科研通 3261119
什么是DOI,文献DOI怎么找? 1800416
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807167