分割
人工智能
锥束ct
计算机科学
标准差
计算机视觉
Sørensen–骰子系数
模式识别(心理学)
图像分割
计算机断层摄影术
数学
医学
放射科
统计
作者
Pierre Lahoud,Mostafa EzEldeen,Thomas Beznik,Holger Willems,André Ferreira Leite,Adriaan Van Gerven,Reinhilde Jacobs
标识
DOI:10.1016/j.joen.2020.12.020
摘要
IntroductionTooth segmentation on cone-beam computed tomographic (CBCT) imaging is a labor-intensive task considering the limited contrast resolution and potential disturbance by various artifacts. Fully automated tooth segmentation cannot be achieved by merely relying on CBCT intensity variations. This study aimed to develop and validate an artificial intelligence (AI)-driven tool for automated tooth segmentation on CBCT imaging.MethodsA total of 433 Digital Imaging and Communications in Medicine images of single- and double-rooted teeth randomly selected from 314 anonymized CBCT scans were imported and manually segmented. An AI-driven tooth segmentation algorithm based on a feature pyramid network was developed to automatically detect and segment teeth, replacing manual user contour placement. The AI-driven tool was evaluated based on volume comparison, intersection over union, the Dice score coefficient, morphologic surface deviation, and total segmentation time.ResultsOverall, AI-driven and clinical reference segmentations resulted in very similar segmentation volumes. The mean intersection over union for full-tooth segmentation was 0.87 (±0.03) and 0.88 (±0.03) for semiautomated (SA) (clinical reference) versus fully automated AI-driven (F-AI) and refined AI-driven (R-AI) tooth segmentation, respectively. R-AI and F-AI segmentation showed an average median surface deviation from SA segmentation of 9.96 μm (±59.33 μm) and 7.85 μm (±69.55 μm), respectively. SA segmentations of single- and double-rooted teeth had a mean total time of 6.6 minutes (±76.15 seconds), F-AI segmentation of 0.5 minutes (±8.64 seconds, 12 times faster), and R-AI segmentation of 1.2 minutes (±33.02 seconds, 6 times faster).ConclusionsThis study showed a unique fast and accurate approach for AI-driven automated tooth segmentation on CBCT imaging. These results may open doors for AI-driven applications in surgical and treatment planning in oral health care.
科研通智能强力驱动
Strongly Powered by AbleSci AI