Artificial Intelligence for Fast and Accurate 3-Dimensional Tooth Segmentation on Cone-beam Computed Tomography

分割 人工智能 锥束ct 计算机科学 标准差 计算机视觉 Sørensen–骰子系数 模式识别(心理学) 图像分割 计算机断层摄影术 数学 医学 放射科 统计
作者
Pierre Lahoud,Mostafa EzEldeen,Thomas Beznik,Holger Willems,André Ferreira Leite,Adriaan Van Gerven,Reinhilde Jacobs
出处
期刊:Journal of Endodontics [Elsevier]
卷期号:47 (5): 827-835 被引量:106
标识
DOI:10.1016/j.joen.2020.12.020
摘要

IntroductionTooth segmentation on cone-beam computed tomographic (CBCT) imaging is a labor-intensive task considering the limited contrast resolution and potential disturbance by various artifacts. Fully automated tooth segmentation cannot be achieved by merely relying on CBCT intensity variations. This study aimed to develop and validate an artificial intelligence (AI)-driven tool for automated tooth segmentation on CBCT imaging.MethodsA total of 433 Digital Imaging and Communications in Medicine images of single- and double-rooted teeth randomly selected from 314 anonymized CBCT scans were imported and manually segmented. An AI-driven tooth segmentation algorithm based on a feature pyramid network was developed to automatically detect and segment teeth, replacing manual user contour placement. The AI-driven tool was evaluated based on volume comparison, intersection over union, the Dice score coefficient, morphologic surface deviation, and total segmentation time.ResultsOverall, AI-driven and clinical reference segmentations resulted in very similar segmentation volumes. The mean intersection over union for full-tooth segmentation was 0.87 (±0.03) and 0.88 (±0.03) for semiautomated (SA) (clinical reference) versus fully automated AI-driven (F-AI) and refined AI-driven (R-AI) tooth segmentation, respectively. R-AI and F-AI segmentation showed an average median surface deviation from SA segmentation of 9.96 μm (±59.33 μm) and 7.85 μm (±69.55 μm), respectively. SA segmentations of single- and double-rooted teeth had a mean total time of 6.6 minutes (±76.15 seconds), F-AI segmentation of 0.5 minutes (±8.64 seconds, 12 times faster), and R-AI segmentation of 1.2 minutes (±33.02 seconds, 6 times faster).ConclusionsThis study showed a unique fast and accurate approach for AI-driven automated tooth segmentation on CBCT imaging. These results may open doors for AI-driven applications in surgical and treatment planning in oral health care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
笃定完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
6秒前
文艺的筮完成签到 ,获得积分10
7秒前
chenchenchen发布了新的文献求助10
8秒前
CipherSage应助Zoeyz采纳,获得10
8秒前
奔奔发布了新的文献求助10
8秒前
cocolu应助传统的鹏涛采纳,获得10
10秒前
13秒前
小葵发布了新的文献求助10
13秒前
15秒前
上官若男应助Li采纳,获得10
17秒前
chenchenchen发布了新的文献求助10
17秒前
在水一方应助Soso采纳,获得10
17秒前
科目三应助liuyan采纳,获得10
19秒前
20秒前
李健应助乐观的中心采纳,获得10
20秒前
sakana完成签到,获得积分20
20秒前
shinnosuke完成签到,获得积分10
21秒前
21秒前
慕青应助Voloid采纳,获得10
23秒前
wade2016发布了新的文献求助10
25秒前
wanci应助大脑洞少年采纳,获得10
26秒前
jiaoshaa完成签到,获得积分10
28秒前
29秒前
CXS完成签到,获得积分10
30秒前
榕树下完成签到,获得积分10
31秒前
桃大屁发布了新的文献求助10
31秒前
珈小羽完成签到,获得积分10
34秒前
34秒前
34秒前
jiaoshaa发布了新的文献求助10
36秒前
36秒前
37秒前
小葵完成签到,获得积分10
37秒前
科研通AI2S应助小倩倩加油采纳,获得10
38秒前
Leif应助兔兔sci采纳,获得10
39秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330222
求助须知:如何正确求助?哪些是违规求助? 2959796
关于积分的说明 8597036
捐赠科研通 2638227
什么是DOI,文献DOI怎么找? 1444215
科研通“疑难数据库(出版商)”最低求助积分说明 669074
邀请新用户注册赠送积分活动 656613