EC-SAGINs: Edge-Computing-Enhanced Space–Air–Ground-Integrated Networks for Internet of Vehicles

计算机科学 边缘计算 技术 GSM演进的增强数据速率 互联网 分布式计算 边缘设备 计算机网络 钥匙(锁) 云计算 电信 计算机安全 万维网 电离层 物理 天文 操作系统
作者
Shuai Yu,Xiaowen Gong,Qian Shi,Xiaofei Wang,Xu Chen
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (8): 5742-5754 被引量:112
标识
DOI:10.1109/jiot.2021.3052542
摘要

Edge-computing-enhanced Internet of Vehicles (EC-IoV) enables ubiquitous data processing and content sharing among vehicles and terrestrial edge computing (TEC) infrastructures (e.g., 5G base stations and roadside units) with little or no human intervention, and plays a key role in the intelligent transportation systems. However, EC-IoV is heavily dependent on the connections and interactions between vehicles and TEC infrastructures, thus will break down in some remote areas where TEC infrastructures are unavailable (e.g., desert, isolated islands, and disaster-stricken areas). Driven by the ubiquitous connections and global-area coverage, space–air–ground-integrated networks (SAGINs) efficiently support seamless coverage and efficient resource management, and represent the next frontier for edge computing. In light of this, we first review the state-of-the-art edge computing research for SAGINs in this article. After discussing several existing orbital and aerial edge computing architectures, we propose a framework of edge computing-enabled SAGINs to support various Internet of Vehicles (EC-IoV) services for the vehicles in remote areas. The main objective of the framework is to minimize the task completion time and satellite resource usage. To this end, a preclassification scheme is presented to reduce the size of action space, and a deep imitation learning-driven offloading and caching algorithm is proposed to achieve real-time decision making. The simulation results show the effectiveness of our proposed scheme. Finally, we also discuss some technology challenges and future directions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺儿完成签到 ,获得积分10
刚刚
1秒前
1秒前
科研通AI5应助太阳采纳,获得10
3秒前
3秒前
肚子幽伤完成签到,获得积分10
3秒前
3秒前
3秒前
满意的晓啸完成签到 ,获得积分20
4秒前
ming发布了新的文献求助10
4秒前
4秒前
李爱国应助奶茶咖啡冻采纳,获得10
5秒前
5秒前
5秒前
6秒前
lier应助冷酷豌豆采纳,获得10
6秒前
6秒前
Eazin发布了新的文献求助100
8秒前
9秒前
9秒前
图灵桑发布了新的文献求助10
9秒前
木木发布了新的文献求助10
9秒前
ch发布了新的文献求助10
10秒前
10秒前
10秒前
你的文献发布了新的文献求助10
10秒前
雨过天晴发布了新的文献求助10
10秒前
司徒诗蕾发布了新的文献求助10
10秒前
Orange应助lipengfei采纳,获得30
11秒前
11秒前
11秒前
11秒前
科研通AI5应助QI采纳,获得10
12秒前
kkk完成签到,获得积分10
12秒前
简默完成签到,获得积分10
12秒前
荀万声发布了新的文献求助10
13秒前
13秒前
佟天问完成签到 ,获得积分10
13秒前
11发布了新的文献求助10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515227
求助须知:如何正确求助?哪些是违规求助? 3097638
关于积分的说明 9236245
捐赠科研通 2792536
什么是DOI,文献DOI怎么找? 1532575
邀请新用户注册赠送积分活动 712185
科研通“疑难数据库(出版商)”最低求助积分说明 707160