Development and implementation of an LIS-based validation system for autoverification toward zero defects in the automated reporting of laboratory test results

正确性 计算机科学 数据验证 一致性(知识库) 过程(计算) 数据挖掘 功能(生物学) 可靠性工程 人工智能 机器学习 算法 程序设计语言 工程类 进化生物学 生物
作者
Dong-Yan Jin,Qing Wang,Dezhi Peng,Jiajia Wang,Bijuan Li,Yating Cheng,Nanxun Mo,Xiaoyan Deng,Ran Tao
出处
期刊:BMC Medical Informatics and Decision Making [Springer Nature]
卷期号:21 (1) 被引量:7
标识
DOI:10.1186/s12911-021-01545-3
摘要

Validation of the autoverification function is one of the critical steps to confirm its effectiveness before use. It is crucial to verify whether the programmed algorithm follows the expected logic and produces the expected results. This process has always relied on the assessment of human-machine consistency and is mostly a manually recorded and time-consuming activity with inherent subjectivity and arbitrariness that cannot guarantee a comprehensive, timely and continuous effectiveness evaluation of the autoverification function. To overcome these inherent limitations, we independently developed and implemented a laboratory information system (LIS)-based validation system for autoverification.We developed a correctness verification and integrity validation method (hereinafter referred to as the "new method") in the form of a human-machine dialog. The system records personnel review steps and determines whether the human-machine review results are consistent. Laboratory personnel then analyze the reasons for any inconsistency according to system prompts, add to or modify rules, reverify, and finally improve the accuracy of autoverification.The validation system was successfully established and implemented. For a dataset consisting of 833 rules for 30 assays, 782 rules (93.87%) were successfully verified in the correctness verification phase, and 51 rules were deleted due to execution errors. In the integrity validation phase, 24 projects were easily verified, while the other 6 projects still required the additional rules or changes to the rule settings. Taking the Hepatitis B virus test as an example, from the setting of 65 rules to the automated releasing of 3000 reports, the validation time was reduced from 452 (manual verification) to 275 h (new method), a reduction in validation time of 177 h. Furthermore, 94.6% (168/182) of laboratory users believed the new method greatly reduced the workload, effectively controlled the report risk and felt satisfied. Since 2019, over 3.5 million reports have been automatically reviewed and issued without a single clinical complaint.To the best of our knowledge, this is the first report to realize autoverification validation as a human-machine interaction. The new method effectively controls the risks of autoverification, shortens time consumption, and improves the efficiency of laboratory verification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
QQ发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
李萌萌完成签到 ,获得积分10
刚刚
彭于晏应助芬栀采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
小马甲应助勤恳易谙采纳,获得10
2秒前
bkagyin应助yunlei采纳,获得10
2秒前
义气饼干完成签到,获得积分10
3秒前
Owen应助QG采纳,获得10
3秒前
rain完成签到,获得积分10
3秒前
小二郎应助BouncyTree采纳,获得10
3秒前
丘比特应助小柴采纳,获得10
3秒前
CipherSage应助现在采纳,获得10
3秒前
瑶啊瑶完成签到,获得积分10
4秒前
4秒前
wanci应助侃侃采纳,获得10
4秒前
4秒前
花灯王子发布了新的文献求助10
4秒前
硕士发布了新的文献求助30
5秒前
smm发布了新的文献求助10
5秒前
yuanyueyue发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
David Zhang发布了新的文献求助10
8秒前
YY完成签到 ,获得积分10
8秒前
54132123发布了新的文献求助10
8秒前
Royalll发布了新的文献求助10
8秒前
jay发布了新的文献求助10
9秒前
上官若男应助兴奋的问旋采纳,获得10
9秒前
LoganLee发布了新的文献求助10
9秒前
9秒前
义气饼干发布了新的文献求助10
10秒前
11秒前
12秒前
科研通AI6.1应助稻草采纳,获得10
12秒前
12秒前
13秒前
ljh发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784155
求助须知:如何正确求助?哪些是违规求助? 5680888
关于积分的说明 15463131
捐赠科研通 4913434
什么是DOI,文献DOI怎么找? 2644642
邀请新用户注册赠送积分活动 1592485
关于科研通互助平台的介绍 1547106