Evanescent wave fiber-optic CH4/CO2 gas sensing based on porous materials (Conference Presentation)

材料科学 光纤 多孔性 光电子学 纤维 包层(金属加工) 多孔介质 毛细管作用 光学 复合材料
作者
Nageswara Lalam,Ping Lu,Mudabbir Badar,Fei Lu,Tao Hong,Michael P. Buric,Paul R. Ohodnicki
标识
DOI:10.1117/12.2558809
摘要

Methane is a major composition of natural gas and considered as a primary greenhouse gas of high global warming potential. In addition, it is also a hazardous flammable gas turns out to be highly explosive if its concentration level reaches 5 to 15 percent by volume. Carbon dioxide is another significant gas since CO2 corrosion is the most common cause of corrosion in natural gas pipelines. Long distance cost-effective CH4 and CO2 distributed sensing technologies for monitoring natural gas infrastructure are not yet readily available, and early corrosion on-set and low-level methane leak detection is highly desirable that can strengthen the integrity and operational reliability, improve the efficiency, and reduce pipeline emissions, which all advance the economics of natural gas delivery. In this work, two types of gas sensing materials, porous silica and hybrid polymer/metal-organic framework (MOF), are investigated based on evanescent wave absorption sensors consisting of a coreless fiber spliced between two single-mode fibers. The low-loss, low refractive index porous silica and the polymer/MOF material with an improved gas adsorption capability and CH4/CO2 selectivity prepared by the sol-gel dip-coating method are respectively used as coating applied to the surface of the coreless fiber. The effects of optical and morphological properties on the repeatability and sensitivity of fiber-optic evanescent wave sensors are studied from transmittance and reflectance measurements by utilizing laser diodes operating at CH4 and CO2 absorption lines. Distributed fiber gas sensing can benefit from the enhanced evanescent wave light scattering in the porous materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小夏发布了新的文献求助10
刚刚
Lijia_YAO发布了新的文献求助20
1秒前
领导范儿应助书生采纳,获得10
1秒前
Lucas应助zry采纳,获得10
3秒前
4秒前
汤还圆发布了新的文献求助10
5秒前
wen发布了新的文献求助10
6秒前
脑洞疼应助范东乐采纳,获得10
6秒前
我是老大应助包容的水香采纳,获得10
6秒前
眼睛大的凝旋完成签到,获得积分10
6秒前
无花果应助push采纳,获得10
7秒前
共享精神应助wentao采纳,获得30
7秒前
明理妙柏完成签到,获得积分10
8秒前
蓝色飞贼完成签到,获得积分10
9秒前
qq.com完成签到,获得积分10
10秒前
10秒前
六爻完成签到,获得积分10
10秒前
爆米花应助公冶代桃采纳,获得10
10秒前
10秒前
11秒前
SciGPT应助欣喜的绝山采纳,获得10
12秒前
Lucas应助小杰采纳,获得10
13秒前
苏楠发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
linn完成签到,获得积分10
15秒前
123完成签到 ,获得积分10
16秒前
16秒前
bkagyin应助科研通管家采纳,获得10
16秒前
16秒前
斯文败类应助天气田田采纳,获得10
16秒前
wanci应助科研通管家采纳,获得10
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
搜集达人应助科研通管家采纳,获得10
17秒前
ding应助科研通管家采纳,获得10
17秒前
海4015应助科研通管家采纳,获得10
17秒前
海4015应助科研通管家采纳,获得10
17秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128551
求助须知:如何正确求助?哪些是违规求助? 2779326
关于积分的说明 7742499
捐赠科研通 2434629
什么是DOI,文献DOI怎么找? 1293580
科研通“疑难数据库(出版商)”最低求助积分说明 623344
版权声明 600514