纳米晶材料
材料科学
兴奋剂
微晶
杂质
图层(电子)
热电材料
热电效应
光电子学
纳米技术
热导率
冶金
复合材料
化学
热力学
物理
有机化学
作者
M. Tsuji,K. Kusano,Takashi Suemasu,Kaoru Toko
摘要
Fermi-level control in a polycrystalline SiGe layer is challenging, especially under a low thermal budget owing to the low activation rate of impurities and defect-induced acceptors. Here, we demonstrate the low-temperature (120–350 °C) synthesis of nanocrystalline p- and n-type Si1−xGex (x: 0–1) layers using the layer exchange technique with a Zn catalyst. Pure Zn formed p-type SiGe layers (hole concentration: 1020 cm−3 for x ≥ 0.8) due to the shallow acceptor level of Zn in Ge. Conversely, As-doped Zn allowed us to synthesize n-type SiGe layers (electron concentration: 1019 cm−3 for x ≤ 0.3) at the lowest ever temperature of 350 °C, owing to the self-organized As doping to SiGe during layer exchange. The resulting p-type Si0.2Ge0.8 and n-type Si0.85Ge0.15 layers exhibited the largest ever power factors (280 μW/mK2 for the p-type and 15 μW/mK2 for the n-type), for SiGe fabricated on a flexible plastic sheet. The low-temperature synthesis technology, for both p- and n-type SiGe layers, opens up the possibility of developing human-friendly, highly reliable, flexible devices including thermoelectric sheets.
科研通智能强力驱动
Strongly Powered by AbleSci AI