Extracting Signals from High-Frequency Trading with Digital Signal Processing Tools

期货合约 计量经济学 高频交易 算法交易 计算机科学 频域 经济 金融经济学 计算机视觉
作者
Jung Heon Song,Marcos López de Prado,Horst D. Simon,Kesheng Wu
出处
期刊:The journal of financial data science [Pageant Media US]
卷期号:1 (4): 124-138 被引量:1
标识
DOI:10.3905/jfds.2019.1.4.124
摘要

As algorithms replace a growing number of tasks performed by humans in the markets, there have been growing concerns about an increased likelihood of cascading events, similar to the Flash Crash of May 6, 2010. To address these concerns, researchers have employed a number of scientific data analysis tools to monitor the risk of such cascading events. As an example, the authors of this article investigate the natural gas (NG) futures market in the frequency domain and the interaction between weather forecasts and NG price data. They observe that Fourier components with high frequencies have become more prominent in recent years and are much stronger than could be expected from an analytical model of the market. Additionally, a significant amount of trading activity occurs in the first few seconds of every minute, which is a tell-tale sign of time-based algorithmic trading. To illustrate the potential of cascading events, the authors further study how weather forecasts drive NG prices and show that, after separating the time series by season to account for the different mechanisms that relate temperature to NG price, the temperature forecast is indeed cointegrated with NG price. They also show that the variations in temperature forecasts contribute to a significant percentage of the average daily price fluctuations, which confirms the possibility that a forecast error could significantly affect the price of NG futures. TOPICS:Statistical methods, simulations, big data/machine learning Key Findings • High-frequency components in the trading data are stronger than expected from a model assuming uniform trading during market hours. • The dominance of the high-frequency components have been increasing over the years. • Relatively small changes in temperature could create a large price fluctuation in natural gas futures contracts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
林机一动发布了新的文献求助10
1秒前
勤奋紫真发布了新的文献求助10
3秒前
拼搏向上发布了新的文献求助10
5秒前
5秒前
er发布了新的文献求助10
5秒前
独特觅翠完成签到 ,获得积分10
6秒前
科研通AI2S应助周涛采纳,获得10
9秒前
10秒前
kiki完成签到 ,获得积分10
10秒前
天天快乐应助Messi采纳,获得10
11秒前
15秒前
充电宝应助靓仔采纳,获得10
17秒前
勤奋紫真完成签到 ,获得积分20
20秒前
20秒前
汉堡包应助er采纳,获得10
21秒前
21秒前
23秒前
24秒前
搜集达人应助司宁采纳,获得10
25秒前
丘比特应助飘扬采纳,获得10
25秒前
11发布了新的文献求助10
26秒前
ningning完成签到 ,获得积分10
26秒前
zhaozhao发布了新的文献求助10
27秒前
bang269发布了新的文献求助30
28秒前
煎饼果子不加葱完成签到,获得积分10
28秒前
司宁完成签到,获得积分10
33秒前
小墨驳回了榴莲应助
35秒前
37秒前
41秒前
41秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
深情安青应助科研通管家采纳,获得10
43秒前
FashionBoy应助科研通管家采纳,获得10
43秒前
赘婿应助科研通管家采纳,获得30
43秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
43秒前
不配.应助科研通管家采纳,获得10
43秒前
科研通AI2S应助科研通管家采纳,获得30
43秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136141
求助须知:如何正确求助?哪些是违规求助? 2787040
关于积分的说明 7780388
捐赠科研通 2443192
什么是DOI,文献DOI怎么找? 1298921
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870