Extracting Signals from High-Frequency Trading with Digital Signal Processing Tools

期货合约 计量经济学 高频交易 算法交易 计算机科学 频域 经济 金融经济学 计算机视觉
作者
Jung Heon Song,Marcos López de Prado,Horst D. Simon,Kesheng Wu
出处
期刊:The journal of financial data science [Pageant Media US]
卷期号:1 (4): 124-138 被引量:1
标识
DOI:10.3905/jfds.2019.1.4.124
摘要

As algorithms replace a growing number of tasks performed by humans in the markets, there have been growing concerns about an increased likelihood of cascading events, similar to the Flash Crash of May 6, 2010. To address these concerns, researchers have employed a number of scientific data analysis tools to monitor the risk of such cascading events. As an example, the authors of this article investigate the natural gas (NG) futures market in the frequency domain and the interaction between weather forecasts and NG price data. They observe that Fourier components with high frequencies have become more prominent in recent years and are much stronger than could be expected from an analytical model of the market. Additionally, a significant amount of trading activity occurs in the first few seconds of every minute, which is a tell-tale sign of time-based algorithmic trading. To illustrate the potential of cascading events, the authors further study how weather forecasts drive NG prices and show that, after separating the time series by season to account for the different mechanisms that relate temperature to NG price, the temperature forecast is indeed cointegrated with NG price. They also show that the variations in temperature forecasts contribute to a significant percentage of the average daily price fluctuations, which confirms the possibility that a forecast error could significantly affect the price of NG futures. TOPICS:Statistical methods, simulations, big data/machine learning Key Findings • High-frequency components in the trading data are stronger than expected from a model assuming uniform trading during market hours. • The dominance of the high-frequency components have been increasing over the years. • Relatively small changes in temperature could create a large price fluctuation in natural gas futures contracts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
123完成签到,获得积分10
1秒前
善良香岚发布了新的文献求助10
1秒前
2秒前
2秒前
444完成签到,获得积分10
2秒前
任一发布了新的文献求助30
2秒前
莉莉发布了新的文献求助10
3秒前
Zoe发布了新的文献求助10
3秒前
Hover完成签到,获得积分10
3秒前
自然的茉莉完成签到,获得积分10
4秒前
4秒前
Mandy完成签到,获得积分10
4秒前
5秒前
脑洞疼应助qaq采纳,获得10
5秒前
世界尽头发布了新的文献求助10
5秒前
小二郎应助科研民工采纳,获得10
5秒前
6秒前
无奈满天发布了新的文献求助10
6秒前
7秒前
MADKAI发布了新的文献求助10
7秒前
7秒前
贪玩丸子完成签到,获得积分10
7秒前
神勇的雅香应助liutaili采纳,获得10
8秒前
KSGGS完成签到,获得积分10
8秒前
YANG关注了科研通微信公众号
8秒前
9秒前
9秒前
9秒前
99发布了新的文献求助10
10秒前
10秒前
科研通AI5应助qi采纳,获得10
10秒前
乐乐发布了新的文献求助10
11秒前
铸一字错发布了新的文献求助10
11秒前
受伤书文完成签到,获得积分10
12秒前
Yvonne发布了新的文献求助10
12秒前
12秒前
温柔的十三完成签到,获得积分10
12秒前
Ll发布了新的文献求助10
13秒前
nikai发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759