清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Extracting Signals from High-Frequency Trading with Digital Signal Processing Tools

期货合约 计量经济学 高频交易 算法交易 计算机科学 频域 经济 金融经济学 计算机视觉
作者
Jung Heon Song,Marcos López de Prado,Horst D. Simon,Kesheng Wu
出处
期刊:The journal of financial data science [Pageant Media US]
卷期号:1 (4): 124-138 被引量:1
标识
DOI:10.3905/jfds.2019.1.4.124
摘要

As algorithms replace a growing number of tasks performed by humans in the markets, there have been growing concerns about an increased likelihood of cascading events, similar to the Flash Crash of May 6, 2010. To address these concerns, researchers have employed a number of scientific data analysis tools to monitor the risk of such cascading events. As an example, the authors of this article investigate the natural gas (NG) futures market in the frequency domain and the interaction between weather forecasts and NG price data. They observe that Fourier components with high frequencies have become more prominent in recent years and are much stronger than could be expected from an analytical model of the market. Additionally, a significant amount of trading activity occurs in the first few seconds of every minute, which is a tell-tale sign of time-based algorithmic trading. To illustrate the potential of cascading events, the authors further study how weather forecasts drive NG prices and show that, after separating the time series by season to account for the different mechanisms that relate temperature to NG price, the temperature forecast is indeed cointegrated with NG price. They also show that the variations in temperature forecasts contribute to a significant percentage of the average daily price fluctuations, which confirms the possibility that a forecast error could significantly affect the price of NG futures. TOPICS:Statistical methods, simulations, big data/machine learning Key Findings • High-frequency components in the trading data are stronger than expected from a model assuming uniform trading during market hours. • The dominance of the high-frequency components have been increasing over the years. • Relatively small changes in temperature could create a large price fluctuation in natural gas futures contracts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
龙猫爱看书完成签到,获得积分10
1秒前
俏皮诺言完成签到,获得积分10
8秒前
10秒前
润润润完成签到 ,获得积分10
21秒前
JYing完成签到 ,获得积分10
31秒前
丘比特应助雪山飞龙采纳,获得10
46秒前
桥西小河完成签到 ,获得积分10
51秒前
Lucas应助雪山飞龙采纳,获得10
57秒前
传奇3应助雪山飞龙采纳,获得10
1分钟前
幽默梦之完成签到 ,获得积分10
1分钟前
科研通AI2S应助雪山飞龙采纳,获得10
1分钟前
1分钟前
DL发布了新的文献求助10
1分钟前
1分钟前
化学元素完成签到,获得积分10
1分钟前
化学元素发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Jessica完成签到,获得积分10
1分钟前
牛仔完成签到 ,获得积分10
2分钟前
GankhuyagJavzan完成签到,获得积分10
2分钟前
yshj完成签到 ,获得积分0
2分钟前
在水一方应助旺旺大礼包采纳,获得10
2分钟前
2分钟前
杰_骜不驯完成签到 ,获得积分10
2分钟前
2分钟前
孙晓燕完成签到 ,获得积分10
2分钟前
浮游应助AM采纳,获得10
3分钟前
从容芮应助AM采纳,获得30
3分钟前
薛家泰完成签到 ,获得积分10
3分钟前
果酱完成签到,获得积分10
3分钟前
DHW1703701完成签到,获得积分10
3分钟前
bo完成签到 ,获得积分10
3分钟前
HU完成签到 ,获得积分10
3分钟前
Thunnus001完成签到 ,获得积分10
3分钟前
如意2023完成签到 ,获得积分10
4分钟前
幽默滑板完成签到 ,获得积分10
5分钟前
jlwang完成签到,获得积分10
5分钟前
仗剑走天涯完成签到 ,获得积分10
5分钟前
wwe完成签到,获得积分10
5分钟前
cheney完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952365
求助须知:如何正确求助?哪些是违规求助? 4215092
关于积分的说明 13111208
捐赠科研通 3997021
什么是DOI,文献DOI怎么找? 2187723
邀请新用户注册赠送积分活动 1202987
关于科研通互助平台的介绍 1115740