亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Extracting Signals from High-Frequency Trading with Digital Signal Processing Tools

期货合约 计量经济学 高频交易 算法交易 计算机科学 频域 经济 金融经济学 计算机视觉
作者
Jung Heon Song,Marcos López de Prado,Horst D. Simon,Kesheng Wu
出处
期刊:The journal of financial data science [Pageant Media US]
卷期号:1 (4): 124-138 被引量:1
标识
DOI:10.3905/jfds.2019.1.4.124
摘要

As algorithms replace a growing number of tasks performed by humans in the markets, there have been growing concerns about an increased likelihood of cascading events, similar to the Flash Crash of May 6, 2010. To address these concerns, researchers have employed a number of scientific data analysis tools to monitor the risk of such cascading events. As an example, the authors of this article investigate the natural gas (NG) futures market in the frequency domain and the interaction between weather forecasts and NG price data. They observe that Fourier components with high frequencies have become more prominent in recent years and are much stronger than could be expected from an analytical model of the market. Additionally, a significant amount of trading activity occurs in the first few seconds of every minute, which is a tell-tale sign of time-based algorithmic trading. To illustrate the potential of cascading events, the authors further study how weather forecasts drive NG prices and show that, after separating the time series by season to account for the different mechanisms that relate temperature to NG price, the temperature forecast is indeed cointegrated with NG price. They also show that the variations in temperature forecasts contribute to a significant percentage of the average daily price fluctuations, which confirms the possibility that a forecast error could significantly affect the price of NG futures. TOPICS:Statistical methods, simulations, big data/machine learning Key Findings • High-frequency components in the trading data are stronger than expected from a model assuming uniform trading during market hours. • The dominance of the high-frequency components have been increasing over the years. • Relatively small changes in temperature could create a large price fluctuation in natural gas futures contracts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文的楷瑞完成签到,获得积分10
7秒前
12秒前
yhh完成签到 ,获得积分10
14秒前
15秒前
19秒前
NexusExplorer应助读书的时候采纳,获得10
21秒前
30秒前
生椰拿铁完成签到 ,获得积分10
31秒前
昵称完成签到,获得积分0
31秒前
飘逸的雁露完成签到,获得积分10
33秒前
烟花应助zhl采纳,获得10
47秒前
香蕉觅云应助读书的时候采纳,获得10
54秒前
57秒前
哇呀呀完成签到 ,获得积分10
1分钟前
bkagyin应助T1aNer299采纳,获得10
1分钟前
成就的笑南完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
morena应助科研通管家采纳,获得30
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
自信号厂完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
anders完成签到 ,获得积分10
1分钟前
abc应助任性学姐采纳,获得10
1分钟前
1分钟前
852应助yu采纳,获得10
1分钟前
超级灰狼完成签到 ,获得积分10
1分钟前
abc应助安静含卉采纳,获得10
1分钟前
abc应助安静含卉采纳,获得10
1分钟前
SciGPT应助安静含卉采纳,获得10
1分钟前
FashionBoy应助读书的时候采纳,获得30
2分钟前
2分钟前
2分钟前
斯文梦寒完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739284
求助须知:如何正确求助?哪些是违规求助? 5385145
关于积分的说明 15339593
捐赠科研通 4881881
什么是DOI,文献DOI怎么找? 2623999
邀请新用户注册赠送积分活动 1572683
关于科研通互助平台的介绍 1529459