Extracting Signals from High-Frequency Trading with Digital Signal Processing Tools

期货合约 计量经济学 高频交易 算法交易 计算机科学 频域 经济 金融经济学 计算机视觉
作者
Jung Heon Song,Marcos López de Prado,Horst D. Simon,Kesheng Wu
出处
期刊:The journal of financial data science [Pageant Media US]
卷期号:1 (4): 124-138 被引量:1
标识
DOI:10.3905/jfds.2019.1.4.124
摘要

As algorithms replace a growing number of tasks performed by humans in the markets, there have been growing concerns about an increased likelihood of cascading events, similar to the Flash Crash of May 6, 2010. To address these concerns, researchers have employed a number of scientific data analysis tools to monitor the risk of such cascading events. As an example, the authors of this article investigate the natural gas (NG) futures market in the frequency domain and the interaction between weather forecasts and NG price data. They observe that Fourier components with high frequencies have become more prominent in recent years and are much stronger than could be expected from an analytical model of the market. Additionally, a significant amount of trading activity occurs in the first few seconds of every minute, which is a tell-tale sign of time-based algorithmic trading. To illustrate the potential of cascading events, the authors further study how weather forecasts drive NG prices and show that, after separating the time series by season to account for the different mechanisms that relate temperature to NG price, the temperature forecast is indeed cointegrated with NG price. They also show that the variations in temperature forecasts contribute to a significant percentage of the average daily price fluctuations, which confirms the possibility that a forecast error could significantly affect the price of NG futures. TOPICS:Statistical methods, simulations, big data/machine learning Key Findings • High-frequency components in the trading data are stronger than expected from a model assuming uniform trading during market hours. • The dominance of the high-frequency components have been increasing over the years. • Relatively small changes in temperature could create a large price fluctuation in natural gas futures contracts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LXx完成签到 ,获得积分10
1秒前
务实雁梅完成签到,获得积分10
2秒前
smottom完成签到,获得积分10
3秒前
格子完成签到,获得积分10
3秒前
4秒前
集典完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
可爱的函函应助木光采纳,获得10
6秒前
细心健柏完成签到 ,获得积分10
6秒前
咕噜完成签到 ,获得积分10
7秒前
小冬猫完成签到 ,获得积分10
7秒前
笨笨棒球应助佰斯特威采纳,获得50
7秒前
琅琊为刃完成签到,获得积分10
9秒前
9秒前
腐竹完成签到,获得积分10
11秒前
zjzjzjzjzj完成签到 ,获得积分10
12秒前
糖豆子完成签到,获得积分10
12秒前
13秒前
wxiao完成签到,获得积分10
13秒前
繁星与北斗完成签到,获得积分10
13秒前
14秒前
xionghaizi发布了新的文献求助10
14秒前
orixero应助听话的白易采纳,获得10
14秒前
14秒前
大齐发布了新的文献求助10
15秒前
草拟大坝完成签到 ,获得积分0
15秒前
烤鸭完成签到 ,获得积分10
16秒前
17秒前
18秒前
是玥玥啊完成签到,获得积分10
20秒前
21秒前
缓慢的蜗牛完成签到,获得积分10
21秒前
核弹发布了新的文献求助10
22秒前
夜色萨尔图完成签到 ,获得积分10
22秒前
23秒前
guoxingliu完成签到,获得积分10
24秒前
犹豫代曼完成签到,获得积分10
24秒前
背后的白山完成签到,获得积分10
24秒前
小马甲应助一个小胖子采纳,获得10
25秒前
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953529
求助须知:如何正确求助?哪些是违规求助? 3498988
关于积分的说明 11093633
捐赠科研通 3229626
什么是DOI,文献DOI怎么找? 1785674
邀请新用户注册赠送积分活动 869464
科研通“疑难数据库(出版商)”最低求助积分说明 801470