Basic Tenets of Classification Algorithms K-Nearest-Neighbor, Support Vector Machine, Random Forest and Neural Network: A Review

过度拟合 随机森林 支持向量机 计算机科学 人工智能 人工神经网络 机器学习 非参数统计 k-最近邻算法 稳健性(进化) 灵敏度(控制系统) 分类器(UML) 噪音(视频) 算法 统计分类 模式识别(心理学) 数据挖掘 理论(学习稳定性) 数学 统计 工程类 生物化学 化学 电子工程 图像(数学) 基因
作者
Ernest Yeboah Boateng,Joseph Otoo,Daniel A. Abaye
出处
期刊:Journal of data analysis and information processing [Scientific Research Publishing, Inc.]
卷期号:08 (04): 341-357 被引量:221
标识
DOI:10.4236/jdaip.2020.84020
摘要

In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF) and Neural Network (NN) as the main statistical tools were reviewed. The aim was to examine and compare these nonparametric classification methods on the following attributes: robustness to training data, sensitivity to changes, data fitting, stability, ability to handle large data sizes, sensitivity to noise, time invested in parameter tuning, and accuracy. The performances, strengths and shortcomings of each of the algorithms were examined, and finally, a conclusion was arrived at on which one has higher performance. It was evident from the literature reviewed that RF is too sensitive to small changes in the training dataset and is occasionally unstable and tends to overfit in the model. KNN is easy to implement and understand but has a major drawback of becoming significantly slow as the size of the data in use grows, while the ideal value of K for the KNN classifier is difficult to set. SVM and RF are insensitive to noise or overtraining, which shows their ability in dealing with unbalanced data. Larger input datasets will lengthen classification times for NN and KNN more than for SVM and RF. Among these nonparametric classification methods, NN has the potential to become a more widely used classification algorithm, but because of their time-consuming parameter tuning procedure, high level of complexity in computational processing, the numerous types of NN architectures to choose from and the high number of algorithms used for training, most researchers recommend SVM and RF as easier and wieldy used methods which repeatedly achieve results with high accuracies and are often faster to implement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
小洋完成签到,获得积分10
2秒前
NIHAO完成签到,获得积分10
2秒前
Achhz发布了新的文献求助10
3秒前
LX完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
FadeSv完成签到,获得积分10
4秒前
sulin关注了科研通微信公众号
5秒前
NIHAO发布了新的文献求助10
5秒前
Chris发布了新的文献求助10
6秒前
不舍天真发布了新的文献求助10
6秒前
6秒前
酷波er应助熊猫采纳,获得10
6秒前
年轻迪奥发布了新的文献求助10
8秒前
8秒前
顾矜应助王艺霖采纳,获得10
8秒前
NI发布了新的文献求助10
9秒前
FIREWORK完成签到,获得积分10
9秒前
lwb完成签到,获得积分10
10秒前
10秒前
小洋关注了科研通微信公众号
10秒前
搜集达人应助LBQ采纳,获得10
11秒前
求知的周发布了新的文献求助30
15秒前
15秒前
彩色耳机完成签到,获得积分10
15秒前
平常兰发布了新的文献求助10
16秒前
16秒前
麦地娜发布了新的文献求助10
17秒前
18秒前
烟花应助害羞的天真采纳,获得10
18秒前
EliGolden完成签到,获得积分10
19秒前
义气的翅膀完成签到,获得积分10
20秒前
20秒前
AAA房地产小王完成签到,获得积分10
20秒前
20秒前
情情晴情情完成签到,获得积分10
21秒前
迷路雨寒应助张瑶采纳,获得100
21秒前
cccc发布了新的文献求助10
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049