Basic Tenets of Classification Algorithms K-Nearest-Neighbor, Support Vector Machine, Random Forest and Neural Network: A Review

过度拟合 随机森林 支持向量机 计算机科学 人工智能 人工神经网络 机器学习 非参数统计 k-最近邻算法 稳健性(进化) 灵敏度(控制系统) 分类器(UML) 噪音(视频) 算法 统计分类 模式识别(心理学) 数据挖掘 理论(学习稳定性) 数学 统计 工程类 生物化学 化学 电子工程 图像(数学) 基因
作者
Ernest Yeboah Boateng,Joseph Otoo,Daniel A. Abaye
出处
期刊:Journal of data analysis and information processing [Scientific Research Publishing, Inc.]
卷期号:08 (04): 341-357 被引量:221
标识
DOI:10.4236/jdaip.2020.84020
摘要

In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF) and Neural Network (NN) as the main statistical tools were reviewed. The aim was to examine and compare these nonparametric classification methods on the following attributes: robustness to training data, sensitivity to changes, data fitting, stability, ability to handle large data sizes, sensitivity to noise, time invested in parameter tuning, and accuracy. The performances, strengths and shortcomings of each of the algorithms were examined, and finally, a conclusion was arrived at on which one has higher performance. It was evident from the literature reviewed that RF is too sensitive to small changes in the training dataset and is occasionally unstable and tends to overfit in the model. KNN is easy to implement and understand but has a major drawback of becoming significantly slow as the size of the data in use grows, while the ideal value of K for the KNN classifier is difficult to set. SVM and RF are insensitive to noise or overtraining, which shows their ability in dealing with unbalanced data. Larger input datasets will lengthen classification times for NN and KNN more than for SVM and RF. Among these nonparametric classification methods, NN has the potential to become a more widely used classification algorithm, but because of their time-consuming parameter tuning procedure, high level of complexity in computational processing, the numerous types of NN architectures to choose from and the high number of algorithms used for training, most researchers recommend SVM and RF as easier and wieldy used methods which repeatedly achieve results with high accuracies and are often faster to implement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研小白发布了新的文献求助10
1秒前
香蕉觅云应助泷生采纳,获得10
2秒前
果果完成签到,获得积分20
4秒前
华仔应助一起去看海采纳,获得10
5秒前
乐乐应助郭子仪采纳,获得10
5秒前
HAOHAO发布了新的文献求助10
6秒前
隐形的雁完成签到,获得积分10
9秒前
只与你完成签到 ,获得积分10
10秒前
11秒前
传奇3应助怡然的扬采纳,获得10
12秒前
12秒前
一起去看海完成签到,获得积分20
12秒前
12秒前
ccm应助清脆琳采纳,获得10
12秒前
NexusExplorer应助果果采纳,获得10
13秒前
16秒前
xmhxpz发布了新的文献求助10
17秒前
DSFSD完成签到,获得积分10
20秒前
20秒前
进口小宵完成签到,获得积分10
22秒前
优秀藏鸟完成签到 ,获得积分10
24秒前
25秒前
泷生发布了新的文献求助10
25秒前
25秒前
26秒前
不配.应助MADAO采纳,获得200
26秒前
27秒前
三月完成签到,获得积分20
28秒前
cizzz发布了新的文献求助10
31秒前
果果发布了新的文献求助10
32秒前
32秒前
32秒前
Criminology34应助nadeem采纳,获得10
34秒前
英俊的铭应助Tom47采纳,获得10
34秒前
36秒前
王小茗发布了新的文献求助10
37秒前
暗中讨饭完成签到,获得积分10
38秒前
Vincent发布了新的文献求助10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563539
求助须知:如何正确求助?哪些是违规求助? 4648430
关于积分的说明 14684815
捐赠科研通 4590392
什么是DOI,文献DOI怎么找? 2518479
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432