亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Basic Tenets of Classification Algorithms K-Nearest-Neighbor, Support Vector Machine, Random Forest and Neural Network: A Review

过度拟合 随机森林 支持向量机 计算机科学 人工智能 人工神经网络 机器学习 非参数统计 k-最近邻算法 稳健性(进化) 灵敏度(控制系统) 分类器(UML) 噪音(视频) 算法 统计分类 模式识别(心理学) 数据挖掘 理论(学习稳定性) 数学 统计 工程类 生物化学 化学 电子工程 图像(数学) 基因
作者
Ernest Yeboah Boateng,Joseph Otoo,Daniel A. Abaye
出处
期刊:Journal of data analysis and information processing [Scientific Research Publishing, Inc.]
卷期号:08 (04): 341-357 被引量:221
标识
DOI:10.4236/jdaip.2020.84020
摘要

In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF) and Neural Network (NN) as the main statistical tools were reviewed. The aim was to examine and compare these nonparametric classification methods on the following attributes: robustness to training data, sensitivity to changes, data fitting, stability, ability to handle large data sizes, sensitivity to noise, time invested in parameter tuning, and accuracy. The performances, strengths and shortcomings of each of the algorithms were examined, and finally, a conclusion was arrived at on which one has higher performance. It was evident from the literature reviewed that RF is too sensitive to small changes in the training dataset and is occasionally unstable and tends to overfit in the model. KNN is easy to implement and understand but has a major drawback of becoming significantly slow as the size of the data in use grows, while the ideal value of K for the KNN classifier is difficult to set. SVM and RF are insensitive to noise or overtraining, which shows their ability in dealing with unbalanced data. Larger input datasets will lengthen classification times for NN and KNN more than for SVM and RF. Among these nonparametric classification methods, NN has the potential to become a more widely used classification algorithm, but because of their time-consuming parameter tuning procedure, high level of complexity in computational processing, the numerous types of NN architectures to choose from and the high number of algorithms used for training, most researchers recommend SVM and RF as easier and wieldy used methods which repeatedly achieve results with high accuracies and are often faster to implement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
wangwangwang完成签到,获得积分10
5秒前
英姑应助活力天蓝采纳,获得30
5秒前
年年年年发布了新的文献求助10
5秒前
无心的善愁完成签到 ,获得积分10
11秒前
冷酷愚志完成签到,获得积分10
12秒前
李健应助年年年年采纳,获得10
12秒前
许伟洋完成签到 ,获得积分10
12秒前
汉堡包应助怕孤单的石头采纳,获得10
14秒前
不安的未来完成签到,获得积分10
17秒前
遥知马完成签到,获得积分10
19秒前
19秒前
20秒前
科研通AI6.1应助Kz采纳,获得10
23秒前
冰汤葫芦发布了新的文献求助10
26秒前
桃子e发布了新的文献求助10
27秒前
酷炫的爆米花完成签到,获得积分10
31秒前
尤诺完成签到 ,获得积分10
32秒前
无名子完成签到 ,获得积分10
33秒前
鱼蛋完成签到,获得积分20
34秒前
35秒前
36秒前
鱼蛋发布了新的文献求助30
40秒前
爆米花应助小鱼采纳,获得10
40秒前
归宁发布了新的文献求助10
43秒前
斯文梦寒完成签到 ,获得积分10
44秒前
sophy发布了新的文献求助20
46秒前
47秒前
紧张的友灵完成签到,获得积分10
47秒前
韩祖完成签到 ,获得积分10
49秒前
49秒前
52秒前
54秒前
54秒前
陆康完成签到 ,获得积分10
55秒前
Ding完成签到 ,获得积分20
55秒前
57秒前
小鱼发布了新的文献求助10
57秒前
57秒前
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779750
求助须知:如何正确求助?哪些是违规求助? 5649480
关于积分的说明 15452248
捐赠科研通 4910842
什么是DOI,文献DOI怎么找? 2642978
邀请新用户注册赠送积分活动 1590629
关于科研通互助平台的介绍 1545067