Basic Tenets of Classification Algorithms K-Nearest-Neighbor, Support Vector Machine, Random Forest and Neural Network: A Review

过度拟合 随机森林 支持向量机 计算机科学 人工智能 人工神经网络 机器学习 非参数统计 k-最近邻算法 稳健性(进化) 灵敏度(控制系统) 分类器(UML) 噪音(视频) 算法 统计分类 模式识别(心理学) 数据挖掘 理论(学习稳定性) 数学 统计 工程类 生物化学 化学 电子工程 图像(数学) 基因
作者
Ernest Yeboah Boateng,Joseph Otoo,Daniel A. Abaye
出处
期刊:Journal of data analysis and information processing [Scientific Research Publishing, Inc.]
卷期号:08 (04): 341-357 被引量:221
标识
DOI:10.4236/jdaip.2020.84020
摘要

In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF) and Neural Network (NN) as the main statistical tools were reviewed. The aim was to examine and compare these nonparametric classification methods on the following attributes: robustness to training data, sensitivity to changes, data fitting, stability, ability to handle large data sizes, sensitivity to noise, time invested in parameter tuning, and accuracy. The performances, strengths and shortcomings of each of the algorithms were examined, and finally, a conclusion was arrived at on which one has higher performance. It was evident from the literature reviewed that RF is too sensitive to small changes in the training dataset and is occasionally unstable and tends to overfit in the model. KNN is easy to implement and understand but has a major drawback of becoming significantly slow as the size of the data in use grows, while the ideal value of K for the KNN classifier is difficult to set. SVM and RF are insensitive to noise or overtraining, which shows their ability in dealing with unbalanced data. Larger input datasets will lengthen classification times for NN and KNN more than for SVM and RF. Among these nonparametric classification methods, NN has the potential to become a more widely used classification algorithm, but because of their time-consuming parameter tuning procedure, high level of complexity in computational processing, the numerous types of NN architectures to choose from and the high number of algorithms used for training, most researchers recommend SVM and RF as easier and wieldy used methods which repeatedly achieve results with high accuracies and are often faster to implement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
momo完成签到 ,获得积分10
1秒前
阿达发布了新的文献求助10
1秒前
2秒前
3秒前
田様应助猪猪意采纳,获得10
3秒前
hhchhcmxhf完成签到,获得积分10
4秒前
5秒前
5秒前
科研小白完成签到,获得积分10
6秒前
sjlsh04完成签到,获得积分20
6秒前
开心书本完成签到,获得积分10
6秒前
娩妩完成签到,获得积分10
6秒前
ctylinux发布了新的文献求助200
7秒前
米线儿完成签到,获得积分10
8秒前
8秒前
9秒前
kxm发布了新的文献求助10
9秒前
烟花应助yjh采纳,获得10
10秒前
绝不延毕完成签到 ,获得积分10
11秒前
!!!完成签到,获得积分10
11秒前
11秒前
科研通AI6应助Sunday采纳,获得10
11秒前
sjlsh04发布了新的文献求助10
11秒前
LJ发布了新的文献求助10
11秒前
执着谷兰发布了新的文献求助10
12秒前
木子子子完成签到 ,获得积分10
12秒前
科研通AI6应助kxm采纳,获得10
13秒前
李健的粉丝团团长应助chen采纳,获得10
14秒前
14秒前
明明完成签到 ,获得积分10
15秒前
啦啦啦发布了新的文献求助10
15秒前
nAtsu完成签到,获得积分10
16秒前
17秒前
SYT完成签到,获得积分10
17秒前
tuya发布了新的文献求助50
17秒前
哈哈哈完成签到 ,获得积分10
18秒前
PXY关闭了PXY文献求助
19秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
北秋生发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652750
求助须知:如何正确求助?哪些是违规求助? 4788147
关于积分的说明 15061398
捐赠科研通 4811163
什么是DOI,文献DOI怎么找? 2573713
邀请新用户注册赠送积分活动 1529555
关于科研通互助平台的介绍 1488319