已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Basic Tenets of Classification Algorithms K-Nearest-Neighbor, Support Vector Machine, Random Forest and Neural Network: A Review

过度拟合 随机森林 支持向量机 计算机科学 人工智能 人工神经网络 机器学习 非参数统计 k-最近邻算法 稳健性(进化) 灵敏度(控制系统) 分类器(UML) 噪音(视频) 算法 统计分类 模式识别(心理学) 数据挖掘 理论(学习稳定性) 数学 统计 工程类 生物化学 化学 电子工程 图像(数学) 基因
作者
Ernest Yeboah Boateng,Joseph Otoo,Daniel A. Abaye
出处
期刊:Journal of data analysis and information processing [Scientific Research Publishing, Inc.]
卷期号:08 (04): 341-357 被引量:221
标识
DOI:10.4236/jdaip.2020.84020
摘要

In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF) and Neural Network (NN) as the main statistical tools were reviewed. The aim was to examine and compare these nonparametric classification methods on the following attributes: robustness to training data, sensitivity to changes, data fitting, stability, ability to handle large data sizes, sensitivity to noise, time invested in parameter tuning, and accuracy. The performances, strengths and shortcomings of each of the algorithms were examined, and finally, a conclusion was arrived at on which one has higher performance. It was evident from the literature reviewed that RF is too sensitive to small changes in the training dataset and is occasionally unstable and tends to overfit in the model. KNN is easy to implement and understand but has a major drawback of becoming significantly slow as the size of the data in use grows, while the ideal value of K for the KNN classifier is difficult to set. SVM and RF are insensitive to noise or overtraining, which shows their ability in dealing with unbalanced data. Larger input datasets will lengthen classification times for NN and KNN more than for SVM and RF. Among these nonparametric classification methods, NN has the potential to become a more widely used classification algorithm, but because of their time-consuming parameter tuning procedure, high level of complexity in computational processing, the numerous types of NN architectures to choose from and the high number of algorithms used for training, most researchers recommend SVM and RF as easier and wieldy used methods which repeatedly achieve results with high accuracies and are often faster to implement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优美紫槐发布了新的文献求助10
1秒前
布同发布了新的文献求助10
1秒前
wang完成签到,获得积分10
2秒前
研友_VZG7GZ应助科研小魏采纳,获得10
3秒前
wangdong完成签到,获得积分10
6秒前
6秒前
WAYNE完成签到,获得积分10
7秒前
智智完成签到 ,获得积分10
10秒前
情怀应助上岸采纳,获得10
12秒前
心空完成签到,获得积分10
12秒前
再见不难发布了新的文献求助10
12秒前
O已w时o完成签到 ,获得积分10
13秒前
13秒前
16秒前
️语完成签到 ,获得积分10
18秒前
abc123发布了新的文献求助10
19秒前
20秒前
大个应助优美紫槐采纳,获得10
20秒前
星星发布了新的文献求助10
26秒前
xxhhhhhh发布了新的文献求助10
26秒前
阳阳关注了科研通微信公众号
30秒前
研友_VZG7GZ应助gigadrill采纳,获得10
31秒前
CipherSage应助22采纳,获得10
32秒前
zhenggc完成签到 ,获得积分10
32秒前
33秒前
科研通AI6应助ruru采纳,获得10
36秒前
Breeze发布了新的文献求助10
38秒前
39秒前
JamesPei应助勤劳泽洋采纳,获得10
39秒前
40秒前
大模型应助威武的语蕊采纳,获得10
41秒前
41秒前
赘婿应助wj采纳,获得10
43秒前
43秒前
44秒前
侧耳倾听发布了新的文献求助10
44秒前
闫闫完成签到,获得积分10
45秒前
阳阳发布了新的文献求助10
45秒前
45秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650215
求助须知:如何正确求助?哪些是违规求助? 4780069
关于积分的说明 15051513
捐赠科研通 4809083
什么是DOI,文献DOI怎么找? 2572018
邀请新用户注册赠送积分活动 1528258
关于科研通互助平台的介绍 1487075