Basic Tenets of Classification Algorithms K-Nearest-Neighbor, Support Vector Machine, Random Forest and Neural Network: A Review

过度拟合 随机森林 支持向量机 计算机科学 人工智能 人工神经网络 机器学习 非参数统计 k-最近邻算法 稳健性(进化) 灵敏度(控制系统) 分类器(UML) 噪音(视频) 算法 统计分类 模式识别(心理学) 数据挖掘 理论(学习稳定性) 数学 统计 工程类 生物化学 化学 电子工程 图像(数学) 基因
作者
Ernest Yeboah Boateng,Joseph Otoo,Daniel A. Abaye
出处
期刊:Journal of data analysis and information processing [Scientific Research Publishing, Inc.]
卷期号:08 (04): 341-357 被引量:221
标识
DOI:10.4236/jdaip.2020.84020
摘要

In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF) and Neural Network (NN) as the main statistical tools were reviewed. The aim was to examine and compare these nonparametric classification methods on the following attributes: robustness to training data, sensitivity to changes, data fitting, stability, ability to handle large data sizes, sensitivity to noise, time invested in parameter tuning, and accuracy. The performances, strengths and shortcomings of each of the algorithms were examined, and finally, a conclusion was arrived at on which one has higher performance. It was evident from the literature reviewed that RF is too sensitive to small changes in the training dataset and is occasionally unstable and tends to overfit in the model. KNN is easy to implement and understand but has a major drawback of becoming significantly slow as the size of the data in use grows, while the ideal value of K for the KNN classifier is difficult to set. SVM and RF are insensitive to noise or overtraining, which shows their ability in dealing with unbalanced data. Larger input datasets will lengthen classification times for NN and KNN more than for SVM and RF. Among these nonparametric classification methods, NN has the potential to become a more widely used classification algorithm, but because of their time-consuming parameter tuning procedure, high level of complexity in computational processing, the numerous types of NN architectures to choose from and the high number of algorithms used for training, most researchers recommend SVM and RF as easier and wieldy used methods which repeatedly achieve results with high accuracies and are often faster to implement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助牛马的人采纳,获得10
刚刚
浮游应助义气的妙松采纳,获得10
刚刚
LYSM发布了新的文献求助10
刚刚
colaaa完成签到,获得积分20
2秒前
Chem34完成签到,获得积分10
4秒前
71333197发布了新的文献求助10
5秒前
钱多多完成签到 ,获得积分10
6秒前
连糜完成签到 ,获得积分10
7秒前
执着的白桃完成签到,获得积分10
7秒前
阿佳完成签到 ,获得积分10
8秒前
9秒前
夜雨听笑完成签到,获得积分10
9秒前
11秒前
爱吃芒果干完成签到,获得积分10
11秒前
13秒前
满意的蜗牛完成签到 ,获得积分10
15秒前
wumingzi完成签到,获得积分10
17秒前
科研通AI6应助犹豫的向南采纳,获得10
20秒前
1chen完成签到 ,获得积分10
20秒前
liuting完成签到,获得积分10
3分钟前
望除完成签到,获得积分10
3分钟前
浮游应助randy0921采纳,获得10
3分钟前
4分钟前
大模型应助Lnn采纳,获得10
4分钟前
4分钟前
科目三应助reborn采纳,获得10
4分钟前
4分钟前
开开完成签到,获得积分10
4分钟前
4分钟前
4分钟前
善学以致用应助高兴可乐采纳,获得10
4分钟前
小马甲应助Rocky_Qi采纳,获得10
4分钟前
nn完成签到,获得积分20
4分钟前
刘滨豪发布了新的文献求助10
4分钟前
刘研发布了新的文献求助10
4分钟前
71333197发布了新的文献求助10
4分钟前
4分钟前
zz完成签到,获得积分10
4分钟前
nnn7发布了新的文献求助10
4分钟前
自觉的湘完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352940
求助须知:如何正确求助?哪些是违规求助? 4485618
关于积分的说明 13963907
捐赠科研通 4385768
什么是DOI,文献DOI怎么找? 2409561
邀请新用户注册赠送积分活动 1401897
关于科研通互助平台的介绍 1375605