Basic Tenets of Classification Algorithms K-Nearest-Neighbor, Support Vector Machine, Random Forest and Neural Network: A Review

过度拟合 随机森林 支持向量机 计算机科学 人工智能 人工神经网络 机器学习 非参数统计 k-最近邻算法 稳健性(进化) 灵敏度(控制系统) 分类器(UML) 噪音(视频) 算法 统计分类 模式识别(心理学) 数据挖掘 理论(学习稳定性) 数学 统计 工程类 化学 图像(数学) 基因 生物化学 电子工程
作者
Ernest Yeboah Boateng,Joseph Otoo,Daniel A. Abaye
出处
期刊:Journal of data analysis and information processing [Scientific Research Publishing, Inc.]
卷期号:08 (04): 341-357 被引量:221
标识
DOI:10.4236/jdaip.2020.84020
摘要

In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF) and Neural Network (NN) as the main statistical tools were reviewed. The aim was to examine and compare these nonparametric classification methods on the following attributes: robustness to training data, sensitivity to changes, data fitting, stability, ability to handle large data sizes, sensitivity to noise, time invested in parameter tuning, and accuracy. The performances, strengths and shortcomings of each of the algorithms were examined, and finally, a conclusion was arrived at on which one has higher performance. It was evident from the literature reviewed that RF is too sensitive to small changes in the training dataset and is occasionally unstable and tends to overfit in the model. KNN is easy to implement and understand but has a major drawback of becoming significantly slow as the size of the data in use grows, while the ideal value of K for the KNN classifier is difficult to set. SVM and RF are insensitive to noise or overtraining, which shows their ability in dealing with unbalanced data. Larger input datasets will lengthen classification times for NN and KNN more than for SVM and RF. Among these nonparametric classification methods, NN has the potential to become a more widely used classification algorithm, but because of their time-consuming parameter tuning procedure, high level of complexity in computational processing, the numerous types of NN architectures to choose from and the high number of algorithms used for training, most researchers recommend SVM and RF as easier and wieldy used methods which repeatedly achieve results with high accuracies and are often faster to implement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wjy完成签到,获得积分10
1秒前
机灵柚子应助小许采纳,获得10
1秒前
西瓜头给西瓜头的求助进行了留言
2秒前
田様应助无辜秋珊采纳,获得10
2秒前
yam001发布了新的文献求助10
3秒前
3秒前
小二郎应助大大采纳,获得10
3秒前
答案先生完成签到,获得积分10
3秒前
3秒前
Think完成签到,获得积分10
3秒前
eleven发布了新的文献求助10
4秒前
4秒前
4秒前
小羊肖恩完成签到,获得积分10
4秒前
YK发布了新的文献求助200
5秒前
5秒前
脑洞疼应助oniya采纳,获得10
5秒前
yuwq完成签到,获得积分10
5秒前
章丘吴彦祖完成签到,获得积分20
6秒前
6秒前
7秒前
Tayzon完成签到,获得积分10
7秒前
研友_Z11kkZ完成签到,获得积分20
7秒前
8秒前
8秒前
8秒前
8秒前
9秒前
CyrusSo524发布了新的文献求助200
9秒前
苍蝇搓手发布了新的文献求助10
9秒前
9秒前
聪慧的惊蛰完成签到,获得积分10
9秒前
桐桐应助彭鑫采纳,获得10
9秒前
研友_Z11kkZ发布了新的文献求助10
9秒前
FashionBoy应助king采纳,获得10
9秒前
dasd发布了新的文献求助10
10秒前
文静的枕头完成签到,获得积分10
10秒前
10秒前
zzx发布了新的文献求助10
10秒前
彭于晏应助shine采纳,获得10
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Typology of Conditional Constructions 500
Plant–Pollinator Interactions: From Specialization to Generalization 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3588363
求助须知:如何正确求助?哪些是违规求助? 3156903
关于积分的说明 9512790
捐赠科研通 2859742
什么是DOI,文献DOI怎么找? 1571590
邀请新用户注册赠送积分活动 737185
科研通“疑难数据库(出版商)”最低求助积分说明 722118