Basic Tenets of Classification Algorithms K-Nearest-Neighbor, Support Vector Machine, Random Forest and Neural Network: A Review

过度拟合 随机森林 支持向量机 计算机科学 人工智能 人工神经网络 机器学习 非参数统计 k-最近邻算法 稳健性(进化) 灵敏度(控制系统) 分类器(UML) 噪音(视频) 算法 统计分类 模式识别(心理学) 数据挖掘 理论(学习稳定性) 数学 统计 工程类 生物化学 化学 电子工程 图像(数学) 基因
作者
Ernest Yeboah Boateng,Joseph Otoo,Daniel A. Abaye
出处
期刊:Journal of data analysis and information processing [Scientific Research Publishing, Inc.]
卷期号:08 (04): 341-357 被引量:221
标识
DOI:10.4236/jdaip.2020.84020
摘要

In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF) and Neural Network (NN) as the main statistical tools were reviewed. The aim was to examine and compare these nonparametric classification methods on the following attributes: robustness to training data, sensitivity to changes, data fitting, stability, ability to handle large data sizes, sensitivity to noise, time invested in parameter tuning, and accuracy. The performances, strengths and shortcomings of each of the algorithms were examined, and finally, a conclusion was arrived at on which one has higher performance. It was evident from the literature reviewed that RF is too sensitive to small changes in the training dataset and is occasionally unstable and tends to overfit in the model. KNN is easy to implement and understand but has a major drawback of becoming significantly slow as the size of the data in use grows, while the ideal value of K for the KNN classifier is difficult to set. SVM and RF are insensitive to noise or overtraining, which shows their ability in dealing with unbalanced data. Larger input datasets will lengthen classification times for NN and KNN more than for SVM and RF. Among these nonparametric classification methods, NN has the potential to become a more widely used classification algorithm, but because of their time-consuming parameter tuning procedure, high level of complexity in computational processing, the numerous types of NN architectures to choose from and the high number of algorithms used for training, most researchers recommend SVM and RF as easier and wieldy used methods which repeatedly achieve results with high accuracies and are often faster to implement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lxy599完成签到 ,获得积分10
3秒前
4秒前
小白给凯凯的求助进行了留言
6秒前
小白发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
10秒前
邹佳林完成签到,获得积分10
14秒前
药药55完成签到,获得积分10
15秒前
大意的悟空完成签到 ,获得积分10
16秒前
斯文败类应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
Anonymous完成签到,获得积分10
21秒前
乐观忆之完成签到 ,获得积分10
21秒前
田様应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
慕青应助科研通管家采纳,获得10
21秒前
星期五应助科研通管家采纳,获得10
21秒前
润润轩轩完成签到 ,获得积分10
22秒前
帅玉玉完成签到,获得积分10
23秒前
甜甜信封完成签到,获得积分10
26秒前
申燕婷完成签到 ,获得积分10
26秒前
ccc完成签到 ,获得积分10
26秒前
27秒前
Fiona完成签到,获得积分10
28秒前
追尾的猫完成签到 ,获得积分10
29秒前
大意的火龙果完成签到 ,获得积分10
31秒前
31秒前
13344完成签到 ,获得积分10
32秒前
内向的跳跳糖完成签到,获得积分10
32秒前
32秒前
明亮谷波发布了新的文献求助10
33秒前
思思完成签到,获得积分10
34秒前
cici完成签到 ,获得积分10
34秒前
37秒前
云锋发布了新的文献求助10
37秒前
小马甲应助cmu1h采纳,获得30
38秒前
qh0305完成签到,获得积分10
39秒前
Pises完成签到,获得积分10
40秒前
暮夕梧桐完成签到,获得积分10
41秒前
chris完成签到,获得积分10
41秒前
pengpeng完成签到,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599928
求助须知:如何正确求助?哪些是违规求助? 4685747
关于积分的说明 14839041
捐赠科研通 4674223
什么是DOI,文献DOI怎么找? 2538431
邀请新用户注册赠送积分活动 1505597
关于科研通互助平台的介绍 1471086