亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Color Image Restoration Exploiting Inter-Channel Correlation With a 3-Stage CNN

人工智能 脱模 计算机科学 频道(广播) 图像复原 计算机视觉 彩色图像 卷积神经网络 图像质量 特征(语言学) 像素 颜色深度 模式识别(心理学) 图像(数学) 图像处理 电信 语言学 哲学
作者
Kai Cui,Atanas Boev,Elena Alshina,Eckehard Steinbach
出处
期刊:IEEE Journal of Selected Topics in Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:15 (2): 174-189 被引量:16
标识
DOI:10.1109/jstsp.2020.3043148
摘要

Image restoration is a critical component of image processing pipelines and for low-level computer vision tasks. Conventional image restoration approaches are mostly based on hand-crafted image priors. The inter-channel correlation of color images is not fully exploited. Motivated by the special characteristics of the inter-channel correlation (higher correlation for red/green and green/blue channels than for red/blue) in color images and general characteristics (green channel always shows the best image quality among the three color components) of distorted color images, in this paper, a three-stage convolutional neural network (CNN) structure is proposed for color image restoration tasks. Since the green channel is found to have the best quality among all three channels, in the first stage, the network is designed to reconstruct the green component. Then, with the guidance of the reconstructed green channel from the first stage, the red and blue channels are reconstructed in the second stage with two parallel networks. Finally, the intermediate reconstructions from the previous stages are concatenated and further refined jointly. We demonstrate the capabilities of the proposed three-stage structure with three typical color image restoration tasks: color image demosaicking, color compression artifacts reduction, and real-world color image denoising. In addition, we integrate pixel-shuffle convolution into our scheme to improve the efficiency, and also introduce a quality-blind training strategy to simplify the training process for the compression artifacts reduction task. Extensive experimental results and analyses show that the proposed structure successfully exploits the spatial and inter-channel correlation of color images and outperforms the state-of-the-art image reconstruction approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
答辩完成签到 ,获得积分10
2秒前
9秒前
山野的雾完成签到 ,获得积分10
15秒前
搜集达人应助耳东采纳,获得10
24秒前
51秒前
齐家腾完成签到,获得积分10
52秒前
1分钟前
1分钟前
1分钟前
Wch完成签到,获得积分10
1分钟前
无花果应助李琪采纳,获得10
1分钟前
Wch发布了新的文献求助10
1分钟前
1分钟前
1分钟前
齐家腾发布了新的文献求助20
1分钟前
陶醉铁身发布了新的文献求助10
1分钟前
丛士乔完成签到 ,获得积分10
1分钟前
陶醉铁身完成签到,获得积分10
1分钟前
科研通AI6.1应助Yikepp采纳,获得30
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
一吨好运发布了新的文献求助10
2分钟前
2分钟前
绿树成荫完成签到,获得积分10
2分钟前
绿树成荫发布了新的文献求助10
2分钟前
2分钟前
上官若男应助张小明采纳,获得10
2分钟前
2分钟前
Lucas应助绿树成荫采纳,获得10
2分钟前
2分钟前
耳东发布了新的文献求助10
2分钟前
xaopng完成签到,获得积分10
2分钟前
霓霓完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772620
求助须知:如何正确求助?哪些是违规求助? 5600468
关于积分的说明 15429844
捐赠科研通 4905555
什么是DOI,文献DOI怎么找? 2639480
邀请新用户注册赠送积分活动 1587379
关于科研通互助平台的介绍 1542312