Color Image Restoration Exploiting Inter-Channel Correlation With a 3-Stage CNN

人工智能 脱模 计算机科学 频道(广播) 图像复原 计算机视觉 彩色图像 卷积神经网络 图像质量 特征(语言学) 像素 颜色深度 模式识别(心理学) 图像(数学) 图像处理 电信 语言学 哲学
作者
Kai Cui,Atanas Boev,Elena Alshina,Eckehard Steinbach
出处
期刊:IEEE Journal of Selected Topics in Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:15 (2): 174-189 被引量:16
标识
DOI:10.1109/jstsp.2020.3043148
摘要

Image restoration is a critical component of image processing pipelines and for low-level computer vision tasks. Conventional image restoration approaches are mostly based on hand-crafted image priors. The inter-channel correlation of color images is not fully exploited. Motivated by the special characteristics of the inter-channel correlation (higher correlation for red/green and green/blue channels than for red/blue) in color images and general characteristics (green channel always shows the best image quality among the three color components) of distorted color images, in this paper, a three-stage convolutional neural network (CNN) structure is proposed for color image restoration tasks. Since the green channel is found to have the best quality among all three channels, in the first stage, the network is designed to reconstruct the green component. Then, with the guidance of the reconstructed green channel from the first stage, the red and blue channels are reconstructed in the second stage with two parallel networks. Finally, the intermediate reconstructions from the previous stages are concatenated and further refined jointly. We demonstrate the capabilities of the proposed three-stage structure with three typical color image restoration tasks: color image demosaicking, color compression artifacts reduction, and real-world color image denoising. In addition, we integrate pixel-shuffle convolution into our scheme to improve the efficiency, and also introduce a quality-blind training strategy to simplify the training process for the compression artifacts reduction task. Extensive experimental results and analyses show that the proposed structure successfully exploits the spatial and inter-channel correlation of color images and outperforms the state-of-the-art image reconstruction approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
初见完成签到,获得积分10
刚刚
daheeeee发布了新的文献求助20
2秒前
叶子宁完成签到,获得积分10
2秒前
3秒前
4秒前
叫我Le哥完成签到,获得积分10
4秒前
火星上兰发布了新的文献求助10
6秒前
6秒前
一支得卦发布了新的文献求助10
8秒前
wwwwyyyy完成签到,获得积分20
8秒前
8秒前
去2完成签到 ,获得积分10
8秒前
李爱国应助daheeeee采纳,获得10
9秒前
张三发布了新的文献求助10
11秒前
xiaohunagya发布了新的文献求助10
11秒前
阳佟水蓉发布了新的文献求助10
12秒前
乐乐应助木子采纳,获得10
13秒前
wwwwyyyy发布了新的文献求助10
13秒前
ahhh完成签到,获得积分10
14秒前
Risling完成签到,获得积分10
14秒前
顾矜应助xixi采纳,获得10
15秒前
16秒前
16秒前
深情安青应助瑶625采纳,获得10
17秒前
re完成签到,获得积分10
17秒前
pp关闭了pp文献求助
18秒前
归途完成签到 ,获得积分10
19秒前
李爱国应助竹前家庆采纳,获得30
19秒前
星辰大海应助周雪娇采纳,获得10
20秒前
abtx314发布了新的文献求助10
20秒前
daheeeee发布了新的文献求助10
21秒前
动听的雪卉完成签到,获得积分10
23秒前
善学以致用应助敏er好学采纳,获得10
23秒前
陈陈完成签到,获得积分10
24秒前
25秒前
活力鸡完成签到 ,获得积分10
27秒前
冷酷瑾瑜发布了新的文献求助10
27秒前
Binning完成签到,获得积分10
28秒前
安安完成签到,获得积分10
28秒前
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999865
求助须知:如何正确求助?哪些是违规求助? 3539294
关于积分的说明 11276517
捐赠科研通 3277909
什么是DOI,文献DOI怎么找? 1807831
邀请新用户注册赠送积分活动 884231
科研通“疑难数据库(出版商)”最低求助积分说明 810142