已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Color Image Restoration Exploiting Inter-Channel Correlation With a 3-Stage CNN

人工智能 脱模 计算机科学 频道(广播) 图像复原 计算机视觉 彩色图像 卷积神经网络 图像质量 特征(语言学) 像素 颜色深度 模式识别(心理学) 图像(数学) 图像处理 电信 语言学 哲学
作者
Kai Cui,Atanas Boev,Elena Alshina,Eckehard Steinbach
出处
期刊:IEEE Journal of Selected Topics in Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:15 (2): 174-189 被引量:16
标识
DOI:10.1109/jstsp.2020.3043148
摘要

Image restoration is a critical component of image processing pipelines and for low-level computer vision tasks. Conventional image restoration approaches are mostly based on hand-crafted image priors. The inter-channel correlation of color images is not fully exploited. Motivated by the special characteristics of the inter-channel correlation (higher correlation for red/green and green/blue channels than for red/blue) in color images and general characteristics (green channel always shows the best image quality among the three color components) of distorted color images, in this paper, a three-stage convolutional neural network (CNN) structure is proposed for color image restoration tasks. Since the green channel is found to have the best quality among all three channels, in the first stage, the network is designed to reconstruct the green component. Then, with the guidance of the reconstructed green channel from the first stage, the red and blue channels are reconstructed in the second stage with two parallel networks. Finally, the intermediate reconstructions from the previous stages are concatenated and further refined jointly. We demonstrate the capabilities of the proposed three-stage structure with three typical color image restoration tasks: color image demosaicking, color compression artifacts reduction, and real-world color image denoising. In addition, we integrate pixel-shuffle convolution into our scheme to improve the efficiency, and also introduce a quality-blind training strategy to simplify the training process for the compression artifacts reduction task. Extensive experimental results and analyses show that the proposed structure successfully exploits the spatial and inter-channel correlation of color images and outperforms the state-of-the-art image reconstruction approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
我爱Chem完成签到 ,获得积分10
4秒前
深情安青应助Georgechan采纳,获得30
4秒前
十四完成签到,获得积分10
5秒前
ivy发布了新的文献求助10
6秒前
8秒前
komorebi完成签到,获得积分10
8秒前
不想长大完成签到 ,获得积分10
8秒前
Dian发布了新的文献求助10
11秒前
宋冬彦完成签到 ,获得积分10
11秒前
wlei完成签到,获得积分10
12秒前
Akim应助shareef采纳,获得10
13秒前
16秒前
开朗的雁完成签到,获得积分10
19秒前
luckylumia发布了新的文献求助10
20秒前
潦草小狗完成签到 ,获得积分10
25秒前
JamesPei应助Dian采纳,获得10
29秒前
Water完成签到,获得积分10
30秒前
32秒前
GGBoy完成签到,获得积分10
35秒前
Dian完成签到,获得积分10
35秒前
36秒前
Aeeeeeeon完成签到 ,获得积分10
37秒前
橘子海完成签到 ,获得积分10
37秒前
38秒前
lijunliang完成签到 ,获得积分10
39秒前
爆米花完成签到,获得积分10
40秒前
43秒前
小二郎应助哈哈采纳,获得10
43秒前
单身的钧完成签到,获得积分10
43秒前
44秒前
杏仁核操纵子完成签到,获得积分10
44秒前
多肉葡萄完成签到,获得积分10
44秒前
44秒前
竹叶青完成签到,获得积分10
46秒前
FashionBoy应助读书的时候采纳,获得10
47秒前
LA排骨完成签到,获得积分10
47秒前
tree完成签到,获得积分10
49秒前
郜不正发布了新的文献求助10
50秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746340
求助须知:如何正确求助?哪些是违规求助? 5432754
关于积分的说明 15355163
捐赠科研通 4886241
什么是DOI,文献DOI怎么找? 2627141
邀请新用户注册赠送积分活动 1575625
关于科研通互助平台的介绍 1532338