Color Image Restoration Exploiting Inter-Channel Correlation With a 3-Stage CNN

人工智能 脱模 计算机科学 频道(广播) 图像复原 计算机视觉 彩色图像 卷积神经网络 图像质量 特征(语言学) 像素 颜色深度 模式识别(心理学) 图像(数学) 图像处理 电信 语言学 哲学
作者
Kai Cui,Atanas Boev,Elena Alshina,Eckehard Steinbach
出处
期刊:IEEE Journal of Selected Topics in Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:15 (2): 174-189 被引量:16
标识
DOI:10.1109/jstsp.2020.3043148
摘要

Image restoration is a critical component of image processing pipelines and for low-level computer vision tasks. Conventional image restoration approaches are mostly based on hand-crafted image priors. The inter-channel correlation of color images is not fully exploited. Motivated by the special characteristics of the inter-channel correlation (higher correlation for red/green and green/blue channels than for red/blue) in color images and general characteristics (green channel always shows the best image quality among the three color components) of distorted color images, in this paper, a three-stage convolutional neural network (CNN) structure is proposed for color image restoration tasks. Since the green channel is found to have the best quality among all three channels, in the first stage, the network is designed to reconstruct the green component. Then, with the guidance of the reconstructed green channel from the first stage, the red and blue channels are reconstructed in the second stage with two parallel networks. Finally, the intermediate reconstructions from the previous stages are concatenated and further refined jointly. We demonstrate the capabilities of the proposed three-stage structure with three typical color image restoration tasks: color image demosaicking, color compression artifacts reduction, and real-world color image denoising. In addition, we integrate pixel-shuffle convolution into our scheme to improve the efficiency, and also introduce a quality-blind training strategy to simplify the training process for the compression artifacts reduction task. Extensive experimental results and analyses show that the proposed structure successfully exploits the spatial and inter-channel correlation of color images and outperforms the state-of-the-art image reconstruction approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助暖冬的向日葵采纳,获得10
刚刚
www完成签到,获得积分10
1秒前
1秒前
佟韩发布了新的文献求助10
2秒前
zhuling发布了新的文献求助10
2秒前
4秒前
Luma完成签到 ,获得积分10
4秒前
哈密瓜关注了科研通微信公众号
4秒前
wyling发布了新的文献求助10
6秒前
6秒前
Len关闭了Len文献求助
6秒前
雪芽完成签到,获得积分10
7秒前
无花果应助zhuling采纳,获得10
9秒前
9秒前
10秒前
英姑应助Fay采纳,获得10
10秒前
10秒前
霍元甲发布了新的文献求助10
11秒前
12秒前
雾里不去看花完成签到,获得积分10
12秒前
田様应助qiqiqi采纳,获得10
13秒前
13秒前
亳亳完成签到 ,获得积分10
13秒前
小豆子发布了新的文献求助10
14秒前
14秒前
14秒前
施不评发布了新的文献求助50
14秒前
15秒前
15秒前
Salen-Cr发布了新的文献求助10
15秒前
lwxlvji完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
胡天硕完成签到,获得积分10
17秒前
菜头完成签到,获得积分10
18秒前
wyling完成签到,获得积分10
18秒前
田様应助魔幻安南采纳,获得30
18秒前
木子发布了新的文献求助10
18秒前
科目三应助火星上的大开采纳,获得10
19秒前
wangxw完成签到,获得积分10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633771
求助须知:如何正确求助?哪些是违规求助? 4729531
关于积分的说明 14986632
捐赠科研通 4791603
什么是DOI,文献DOI怎么找? 2558961
邀请新用户注册赠送积分活动 1519408
关于科研通互助平台的介绍 1479676