Deep Learning for Time Series Forecasting: A Survey

计算机科学 人工智能 深度学习 领域(数学) 机器学习 人工神经网络 循环神经网络 时间序列 系列(地层学) 卷积神经网络 大数据 数据挖掘 数学 生物 古生物学 纯数学
作者
J. F. Torres,Dalil Hadjout,Abderrazak Sebaa,Francisco Martínez‐Álvarez,Alicia Troncoso
出处
期刊:Big data [Mary Ann Liebert]
卷期号:9 (1): 3-21 被引量:445
标识
DOI:10.1089/big.2020.0159
摘要

Time series forecasting has become a very intensive field of research, which is even increasing in recent years. Deep neural networks have proved to be powerful and are achieving high accuracy in many application fields. For these reasons, they are one of the most widely used methods of machine learning to solve problems dealing with big data nowadays. In this work, the time series forecasting problem is initially formulated along with its mathematical fundamentals. Then, the most common deep learning architectures that are currently being successfully applied to predict time series are described, highlighting their advantages and limitations. Particular attention is given to feed forward networks, recurrent neural networks (including Elman, long-short term memory, gated recurrent units, and bidirectional networks), and convolutional neural networks. Practical aspects, such as the setting of values for hyper-parameters and the choice of the most suitable frameworks, for the successful application of deep learning to time series are also provided and discussed. Several fruitful research fields in which the architectures analyzed have obtained a good performance are reviewed. As a result, research gaps have been identified in the literature for several domains of application, thus expecting to inspire new and better forms of knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朴实初夏发布了新的文献求助10
1秒前
阿呆发布了新的文献求助10
3秒前
Yang发布了新的文献求助10
4秒前
科研通AI2S应助草木采纳,获得10
4秒前
暴躁的访波完成签到,获得积分10
4秒前
gy发布了新的文献求助10
5秒前
zhangh65完成签到,获得积分10
6秒前
7秒前
闾丘惜萱完成签到,获得积分10
9秒前
10秒前
义气聪展完成签到 ,获得积分10
12秒前
12秒前
gy完成签到,获得积分10
13秒前
点点完成签到 ,获得积分10
14秒前
16秒前
yyuan完成签到,获得积分10
16秒前
16秒前
专注寻菱完成签到,获得积分10
16秒前
阿腾发布了新的文献求助10
19秒前
脑三问完成签到,获得积分0
19秒前
yunidesuuu发布了新的文献求助10
21秒前
augur完成签到,获得积分10
22秒前
科目三应助yoyo采纳,获得10
22秒前
大水牛完成签到,获得积分10
24秒前
JIE发布了新的文献求助10
24秒前
26秒前
28秒前
薰硝壤应助寂寞的寒风采纳,获得10
29秒前
猪皮king完成签到,获得积分10
29秒前
29秒前
陈晶完成签到 ,获得积分10
29秒前
蚂蚁完成签到 ,获得积分10
30秒前
单薄的忆枫完成签到,获得积分10
31秒前
31秒前
爆米花应助将将采纳,获得10
31秒前
31秒前
景Q同学发布了新的文献求助10
33秒前
wzh发布了新的文献求助10
35秒前
36秒前
科研通AI2S应助十二采纳,获得10
36秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140918
求助须知:如何正确求助?哪些是违规求助? 2791878
关于积分的说明 7800737
捐赠科研通 2448159
什么是DOI,文献DOI怎么找? 1302404
科研通“疑难数据库(出版商)”最低求助积分说明 626548
版权声明 601226