Deep Learning for Time Series Forecasting: A Survey

计算机科学 人工智能 深度学习 领域(数学) 机器学习 人工神经网络 循环神经网络 时间序列 系列(地层学) 卷积神经网络 大数据 数据挖掘 数学 生物 古生物学 纯数学
作者
J. F. Torres,Dalil Hadjout,Abderrazak Sebaa,Francisco Martínez‐Álvarez,Alicia Troncoso
出处
期刊:Big data [Mary Ann Liebert, Inc.]
卷期号:9 (1): 3-21 被引量:531
标识
DOI:10.1089/big.2020.0159
摘要

Time series forecasting has become a very intensive field of research, which is even increasing in recent years. Deep neural networks have proved to be powerful and are achieving high accuracy in many application fields. For these reasons, they are one of the most widely used methods of machine learning to solve problems dealing with big data nowadays. In this work, the time series forecasting problem is initially formulated along with its mathematical fundamentals. Then, the most common deep learning architectures that are currently being successfully applied to predict time series are described, highlighting their advantages and limitations. Particular attention is given to feed forward networks, recurrent neural networks (including Elman, long-short term memory, gated recurrent units, and bidirectional networks), and convolutional neural networks. Practical aspects, such as the setting of values for hyper-parameters and the choice of the most suitable frameworks, for the successful application of deep learning to time series are also provided and discussed. Several fruitful research fields in which the architectures analyzed have obtained a good performance are reviewed. As a result, research gaps have been identified in the literature for several domains of application, thus expecting to inspire new and better forms of knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5321发布了新的文献求助10
5秒前
彭于晏应助Xin采纳,获得10
5秒前
8秒前
打打应助相信柯学采纳,获得10
9秒前
阳光的紊完成签到,获得积分10
10秒前
顾矜应助乐观沛白采纳,获得10
13秒前
13秒前
太阳花发布了新的文献求助10
14秒前
舍曲林发布了新的文献求助10
15秒前
SHAO应助科研通管家采纳,获得10
17秒前
Lucas应助科研通管家采纳,获得10
17秒前
地表飞猪应助科研通管家采纳,获得10
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
Hello应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得10
17秒前
ED应助科研通管家采纳,获得10
17秒前
彭于晏应助科研通管家采纳,获得30
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
大模型应助科研通管家采纳,获得10
17秒前
大模型应助科研通管家采纳,获得10
17秒前
SYLH应助科研通管家采纳,获得30
17秒前
星辰大海应助科研通管家采纳,获得30
18秒前
23秒前
lxp发布了新的文献求助30
27秒前
30秒前
大模型应助lxp采纳,获得10
33秒前
放倒巨大豆蔓完成签到 ,获得积分10
34秒前
牛文文发布了新的文献求助10
35秒前
ztl完成签到 ,获得积分10
38秒前
xkxkii发布了新的文献求助10
39秒前
lc发布了新的文献求助10
39秒前
Akim应助丹妮采纳,获得10
41秒前
李木子完成签到 ,获得积分10
44秒前
可爱的函函应助牛文文采纳,获得10
45秒前
49秒前
冷艳的道天完成签到 ,获得积分10
49秒前
51秒前
李健的小迷弟应助临澈采纳,获得10
51秒前
果酱的奥特曼完成签到,获得积分10
52秒前
隐形曼青应助岳凯采纳,获得10
53秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993097
求助须知:如何正确求助?哪些是违规求助? 3534001
关于积分的说明 11264347
捐赠科研通 3273705
什么是DOI,文献DOI怎么找? 1806142
邀请新用户注册赠送积分活动 883003
科研通“疑难数据库(出版商)”最低求助积分说明 809652