Deep Learning for Time Series Forecasting: A Survey

计算机科学 人工智能 深度学习 领域(数学) 机器学习 人工神经网络 循环神经网络 时间序列 系列(地层学) 卷积神经网络 大数据 数据挖掘 数学 生物 古生物学 纯数学
作者
J. F. Torres,Dalil Hadjout,Abderrazak Sebaa,Francisco Martínez–Álvarez,Alicia Troncoso
出处
期刊:Big data [Mary Ann Liebert, Inc.]
卷期号:9 (1): 3-21 被引量:491
标识
DOI:10.1089/big.2020.0159
摘要

Time series forecasting has become a very intensive field of research, which is even increasing in recent years. Deep neural networks have proved to be powerful and are achieving high accuracy in many application fields. For these reasons, they are one of the most widely used methods of machine learning to solve problems dealing with big data nowadays. In this work, the time series forecasting problem is initially formulated along with its mathematical fundamentals. Then, the most common deep learning architectures that are currently being successfully applied to predict time series are described, highlighting their advantages and limitations. Particular attention is given to feed forward networks, recurrent neural networks (including Elman, long-short term memory, gated recurrent units, and bidirectional networks), and convolutional neural networks. Practical aspects, such as the setting of values for hyper-parameters and the choice of the most suitable frameworks, for the successful application of deep learning to time series are also provided and discussed. Several fruitful research fields in which the architectures analyzed have obtained a good performance are reviewed. As a result, research gaps have been identified in the literature for several domains of application, thus expecting to inspire new and better forms of knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烙饼完成签到,获得积分10
1秒前
HEIKU应助laohei94_6采纳,获得10
1秒前
纯情的白开水完成签到 ,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
丘比特应助如意板栗采纳,获得30
3秒前
3秒前
4秒前
万能图书馆应助温暖芸采纳,获得10
4秒前
科研通AI5应助Eliauk采纳,获得10
5秒前
Qing完成签到,获得积分10
5秒前
霸气的亿先完成签到 ,获得积分10
5秒前
田様应助66ds采纳,获得10
6秒前
6秒前
甜甜寒香发布了新的文献求助10
6秒前
深情安青应助莽撞禄星采纳,获得10
7秒前
科研通AI5应助kshuizhuyu采纳,获得10
7秒前
caohai发布了新的文献求助10
7秒前
8秒前
8秒前
科研通AI5应助nortun采纳,获得30
8秒前
9秒前
9秒前
飞跃云栖竹径的幸福地精完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
Lucas应助caohai采纳,获得10
12秒前
ww发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
zzz123456789发布了新的文献求助10
13秒前
15秒前
LincLin发布了新的文献求助10
16秒前
16秒前
难过盼海完成签到,获得积分10
16秒前
今后应助鲸落采纳,获得10
17秒前
66ds发布了新的文献求助10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662735
求助须知:如何正确求助?哪些是违规求助? 3223515
关于积分的说明 9752041
捐赠科研通 2933470
什么是DOI,文献DOI怎么找? 1606108
邀请新用户注册赠送积分活动 758266
科研通“疑难数据库(出版商)”最低求助积分说明 734771