Deep Learning for Time Series Forecasting: A Survey

计算机科学 人工智能 深度学习 领域(数学) 机器学习 人工神经网络 循环神经网络 时间序列 系列(地层学) 卷积神经网络 大数据 数据挖掘 数学 生物 古生物学 纯数学
作者
J. F. Torres,Dalil Hadjout,Abderrazak Sebaa,Francisco Martínez‐Álvarez,Alicia Troncoso
出处
期刊:Big data [Mary Ann Liebert]
卷期号:9 (1): 3-21 被引量:567
标识
DOI:10.1089/big.2020.0159
摘要

Time series forecasting has become a very intensive field of research, which is even increasing in recent years. Deep neural networks have proved to be powerful and are achieving high accuracy in many application fields. For these reasons, they are one of the most widely used methods of machine learning to solve problems dealing with big data nowadays. In this work, the time series forecasting problem is initially formulated along with its mathematical fundamentals. Then, the most common deep learning architectures that are currently being successfully applied to predict time series are described, highlighting their advantages and limitations. Particular attention is given to feed forward networks, recurrent neural networks (including Elman, long-short term memory, gated recurrent units, and bidirectional networks), and convolutional neural networks. Practical aspects, such as the setting of values for hyper-parameters and the choice of the most suitable frameworks, for the successful application of deep learning to time series are also provided and discussed. Several fruitful research fields in which the architectures analyzed have obtained a good performance are reviewed. As a result, research gaps have been identified in the literature for several domains of application, thus expecting to inspire new and better forms of knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
infognet发布了新的文献求助10
刚刚
刚刚
一个左正蹬完成签到,获得积分10
1秒前
1秒前
1秒前
Ava应助默默的素阴采纳,获得10
3秒前
3秒前
细嗅蔷薇完成签到,获得积分10
3秒前
兔兔更健康完成签到,获得积分10
4秒前
cherryhuang发布了新的文献求助10
4秒前
5秒前
科研通AI6应助不错采纳,获得10
5秒前
lseonf发布了新的文献求助10
6秒前
6秒前
戴戴应助sakdjfkasdf采纳,获得10
6秒前
6秒前
小蘑菇应助wp采纳,获得10
6秒前
飞飞应助HC采纳,获得10
7秒前
睿123完成签到 ,获得积分10
7秒前
7秒前
卖萌的秋田完成签到,获得积分10
7秒前
7秒前
在水一方应助san行采纳,获得30
8秒前
8秒前
憨憨发布了新的文献求助10
8秒前
infognet完成签到,获得积分20
9秒前
ayuan完成签到,获得积分10
9秒前
脑洞疼应助李成博采纳,获得10
9秒前
9秒前
9秒前
阿姆逗完成签到 ,获得积分10
10秒前
10秒前
10秒前
11秒前
坦率曼梅发布了新的文献求助20
11秒前
田tian发布了新的文献求助20
11秒前
11秒前
清秀网络完成签到,获得积分10
12秒前
Ava应助ttt采纳,获得10
12秒前
12秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587472
求助须知:如何正确求助?哪些是违规求助? 4670562
关于积分的说明 14783436
捐赠科研通 4622867
什么是DOI,文献DOI怎么找? 2531286
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468080