Early identification of impending cardiac arrest in neonates and infants in the cardiovascular ICU: a statistical modelling approach using physiologic monitoring data

医学 急诊医学 回顾性队列研究 疾病 重症监护医学 内科学
作者
Sanjukta N. Bose,Adam Verigan,Jade Hanson,Luis Ahumada,Sharon R. Ghazarian,Neil A. Goldenberg,Arabela Stock,Jeffrey P. Jacobs
出处
期刊:Cardiology in The Young [Cambridge University Press]
卷期号:29 (11): 1340-1348 被引量:19
标识
DOI:10.1017/s1047951119002002
摘要

Abstract Objective: To develop a physiological data-driven model for early identification of impending cardiac arrest in neonates and infants with cardiac disease hospitalised in the cardiovascular ICU. Methods: We performed a single-institution retrospective cohort study (11 January 2013–16 September 2015) of patients ≤1 year old with cardiac disease who were hospitalised in the cardiovascular ICU at a tertiary care children’s hospital. Demographics and diagnostic codes of cardiac arrest were obtained via the electronic health record. Diagnosis of cardiac arrest was validated by expert clinician review. Minute-to-minute physiological monitoring data were recorded via bedside monitors. A generalized linear model was used to compute a minute by minute risk score. Training and test data sets both included data from patients who did and did not develop cardiac arrest. An optimal risk-score threshold was derived based on the model’s discriminatory capacity for impending arrest versus non-arrest. Model performance measures included sensitivity, specificity, accuracy, likelihood ratios, and post-test probability of arrest. Results: The final model consisting of multiple clinical parameters was able to identify impending cardiac arrest at least 2 hours prior to the event with an overall accuracy of 75% (sensitivity = 61%, specificity = 80%) and observed an increase in probability of detection of cardiac arrest from a pre-test probability of 9.6% to a post-test probability of 21.2%. Conclusions: Our findings demonstrate that a predictive model using physiologic monitoring data in neonates and infants with cardiac disease hospitalised in the paediatric cardiovascular ICU can identify impending cardiac arrest on average 17 hours prior to arrest.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
公孙朝雨完成签到 ,获得积分10
3秒前
小二郎应助忘带耳机采纳,获得10
4秒前
5秒前
19完成签到,获得积分0
5秒前
6秒前
ffw1完成签到,获得积分10
6秒前
ESLG完成签到 ,获得积分10
7秒前
树叶有专攻完成签到,获得积分10
8秒前
Sherry完成签到,获得积分10
11秒前
lcsolar发布了新的文献求助10
13秒前
朝歌完成签到,获得积分10
13秒前
DAJI完成签到,获得积分10
13秒前
深情安青应助kjh采纳,获得30
15秒前
星河完成签到,获得积分10
17秒前
scienceL完成签到,获得积分10
18秒前
18秒前
杭雨雪完成签到,获得积分10
20秒前
ChatGPT发布了新的文献求助10
20秒前
欣慰的舞仙完成签到,获得积分10
20秒前
小雨完成签到,获得积分10
20秒前
Hale完成签到,获得积分0
21秒前
思岩完成签到 ,获得积分10
21秒前
舒先生完成签到,获得积分10
22秒前
完美世界应助scienceL采纳,获得10
22秒前
23秒前
23秒前
马东完成签到,获得积分10
24秒前
ykpg完成签到,获得积分20
24秒前
神奇海螺完成签到,获得积分10
25秒前
拾壹发布了新的文献求助10
25秒前
迅速的鹤完成签到,获得积分10
26秒前
wlqc完成签到,获得积分10
26秒前
28秒前
28秒前
Nathan完成签到,获得积分0
28秒前
华仔应助djbj2022采纳,获得10
28秒前
kjh发布了新的文献求助10
28秒前
小生不才完成签到 ,获得积分10
28秒前
螳螂腿子完成签到,获得积分10
28秒前
何浏亮完成签到,获得积分10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3571483
求助须知:如何正确求助?哪些是违规求助? 3142021
关于积分的说明 9445454
捐赠科研通 2843551
什么是DOI,文献DOI怎么找? 1562864
邀请新用户注册赠送积分活动 731380
科研通“疑难数据库(出版商)”最低求助积分说明 718546