Exploring the Linear and Nonlinear Causality Between Internet Big Data and Stock Markets

因果关系(物理学) 大数据 计量经济学 股票市场 格兰杰因果关系 计算机科学 经济 非线性系统 库存(枪支)
作者
Jichang Dong,Wei Dai,Jingjing Li
出处
期刊:Journal of Systems Science & Complexity [Springer Science+Business Media]
卷期号:33 (3): 783-798 被引量:2
标识
DOI:10.1007/s11424-020-8119-y
摘要

In the era of big data, stock markets are closely connected with Internet big data from diverse sources. This paper makes the first attempt to compare the linkage between stock markets and various Internet big data collected from search engines, public media and social media. To achieve this purpose, a big data-based causality testing framework is proposed with three steps, i.e., data crawling, data mining and causality testing. Taking the Shanghai Stock Exchange and Shenzhen Stock Exchange as targets for stock markets, web search data, news, and microblogs as samples of Internet big data, some interesting findings can be obtained. 1) There is a strong bi-directional, linear and nonlinear Granger causality between stock markets and investors’ web search behaviors due to some similar trends and uncertain factors. 2) News sentiments from public media have Granger causality with stock markets in a bi-directional linear way, while microblog sentiments from social media have Granger causality with stock markets in a unidirectional linear way, running from stock markets to microblog sentiments. 3) News sentiments can explain the changes in stock markets better than microblog sentiments due to their authority. The results of this paper might provide some valuable information for both stock market investors and modelers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
panpan发布了新的文献求助10
刚刚
刚刚
42blink发布了新的文献求助10
刚刚
1秒前
mjq发布了新的文献求助10
2秒前
ming完成签到,获得积分10
3秒前
彭于晏应助Ki_Ayasato采纳,获得10
4秒前
4秒前
4秒前
12完成签到,获得积分10
5秒前
5秒前
Qian发布了新的文献求助30
5秒前
ZZY发布了新的文献求助10
7秒前
7秒前
月下独酌发布了新的文献求助10
7秒前
干净雨安发布了新的文献求助10
8秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
TiAmo完成签到,获得积分20
12秒前
sopha完成签到,获得积分10
13秒前
浮游应助甜甜花卷采纳,获得10
13秒前
将军完成签到,获得积分10
14秒前
汤泡泡发布了新的文献求助10
16秒前
20秒前
海洋关注了科研通微信公众号
20秒前
大个应助某亮采纳,获得10
20秒前
李爱国应助敏感的明杰采纳,获得10
20秒前
贾克斯完成签到,获得积分10
21秒前
NexusExplorer应助吴中秋采纳,获得10
22秒前
顾矜应助WWW采纳,获得10
23秒前
24秒前
陈什么烨发布了新的文献求助10
24秒前
25秒前
代杰居然发布了新的文献求助30
25秒前
李健的小迷弟应助刘凯采纳,获得10
25秒前
25秒前
27秒前
xiaobizaizhi233完成签到,获得积分10
27秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125340
求助须知:如何正确求助?哪些是违规求助? 4329194
关于积分的说明 13490551
捐赠科研通 4164032
什么是DOI,文献DOI怎么找? 2282685
邀请新用户注册赠送积分活动 1283829
关于科研通互助平台的介绍 1223099