通信卫星
卫星
计算机科学
自由空间光通信
遥感
电信
无线
光无线
通信系统
带宽(计算)
光通信
电子工程
工程类
航空航天工程
地理
作者
Hemani Kaushal,Georges Kaddoum
标识
DOI:10.1109/comst.2016.2603518
摘要
In recent years, free space optical communication has gained significant importance owing to its unique features: large bandwidth, license-free spectrum, high data rate, easy and quick deployability, less power and low mass requirements. FSO communication uses the optical carrier in the near infrared band to establish either terrestrial links within the Earth's atmosphere or inter-satellite or deep space links or ground-to-satellite or satellite-to-ground links. However, despite the great potential of FSO communication, its performance is limited by the adverse effects viz., absorption, scattering, and turbulence of the atmospheric channel. This paper presents a comprehensive survey on various challenges faced by FSO communication system for ground-to-satellite or satellite-to-ground and inter-satellite links. It also provides details of various performance mitigation techniques in order to have high link availability and reliability. The first part of the paper will focus on various types of impairments that pose a serious challenge to the performance of optical communication system for ground-to-satellite or satellite-to-ground and inter-satellite links. The latter part of the paper will provide the reader with an exhaustive review of various techniques both at physical layer as well as at the other layers i.e., link, network or transport layer to combat the adverse effects of the atmosphere. It also uniquely presents a recently developed technique using orbital angular momentum for utilizing the high capacity advantage of the optical carrier in case of space-based and near-Earth optical communication links. This survey provides the reader with comprehensive details on the use of space-based optical backhaul links in order to provide high-capacity and low-cost backhaul solutions.
科研通智能强力驱动
Strongly Powered by AbleSci AI