Color texture classification of yarn-dyed woven fabric based on dual-side scanning and co-occurrence matrix

人工智能 纱线 纹理(宇宙学) 对偶(语法数字) 基质(化学分析) 共现矩阵 人工神经网络 机织物 模式识别(心理学) 反向传播 计算机科学 织物 计算机视觉 图像(数学) 复合材料 图像纹理 材料科学 图像处理 艺术 文学类
作者
Binjie Xin,Jie Zhang,Rui Zhang,Xiangji Wu
出处
期刊:Textile Research Journal [SAGE Publishing]
卷期号:87 (15): 1883-1895 被引量:19
标识
DOI:10.1177/0040517516660886
摘要

Color texture classification as a part of fabric analysis is significant for textile manufacturing. In this research, a new artificial intelligence method based on a dual-side co-occurrence matrix and a back propagation neural network has been proposed for color texture classification, which could achieve relatively accurate classification results for yarn-dyed woven fabric compared with the traditional co-occurrence matrix for a single-side image. Firstly, a laboratory dual-side imaging system has been established to digitize the upper-side and lower-side images sequentially. Secondly, the dual-side co-occurrence matrix could be generated based on these dual images; four texture features could be extracted for the evaluation of the fabric texture characteristics. Thirdly, a well-trained back propagation neural network was established with the four defined features as the input vectors and the color texture type of yarn-dyed woven fabric as the output vector. The efficiency of two different classification systems based on a dual-side co-occurrence matrix and a single-side co-occurrence matrix has been compared systematically. Our experimental results show that the artificial intelligence system based on a dual-side co-occurrence matrix and back propagation neural network model could achieve a relatively better classification effect, with the high coefficient ratio ( R = 0.9726) when d = 0.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ilk666完成签到,获得积分10
刚刚
复杂便当发布了新的文献求助10
刚刚
刚刚
jiaru发布了新的文献求助10
刚刚
刚刚
wangye完成签到,获得积分10
1秒前
欧阳振应助雪白葵阴采纳,获得10
1秒前
gll206发布了新的文献求助10
2秒前
书羽完成签到,获得积分0
2秒前
江江完成签到,获得积分10
2秒前
赘婿应助123采纳,获得10
3秒前
知了发布了新的文献求助10
3秒前
敏感初露完成签到,获得积分10
3秒前
3秒前
希望天下0贩的0应助277采纳,获得10
4秒前
儒雅沛凝发布了新的文献求助10
4秒前
zz完成签到,获得积分10
4秒前
4秒前
5秒前
黑崎一护完成签到,获得积分10
5秒前
大胆的向日葵应助syx采纳,获得10
5秒前
5秒前
5秒前
Tiffany发布了新的文献求助10
6秒前
敏感初露发布了新的文献求助10
6秒前
过氧化氢应助王不王采纳,获得10
8秒前
不能说的秘密完成签到,获得积分10
9秒前
羊驼罐头完成签到,获得积分10
9秒前
gxmu6322完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
阿巴阿巴完成签到,获得积分10
9秒前
9秒前
上官若男应助舒庆春采纳,获得10
10秒前
demom完成签到 ,获得积分10
10秒前
wynne313发布了新的文献求助10
10秒前
Binning完成签到,获得积分10
10秒前
Hello应助俭朴的世界采纳,获得10
10秒前
Laraine完成签到,获得积分20
10秒前
11秒前
桐桐应助敏感初露采纳,获得10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582