计算机科学
解析
依存语法
人工智能
超参数
水准点(测量)
图形
分析器组合器
自然语言处理
自顶向下分析
机器学习
理论计算机科学
大地测量学
地理
作者
Timothy Dozat,Christopher D. Manning
出处
期刊:Cornell University - arXiv
日期:2016-01-01
被引量:673
标识
DOI:10.48550/arxiv.1611.01734
摘要
This paper builds off recent work from Kiperwasser & Goldberg (2016) using neural attention in a simple graph-based dependency parser. We use a larger but more thoroughly regularized parser than other recent BiLSTM-based approaches, with biaffine classifiers to predict arcs and labels. Our parser gets state of the art or near state of the art performance on standard treebanks for six different languages, achieving 95.7% UAS and 94.1% LAS on the most popular English PTB dataset. This makes it the highest-performing graph-based parser on this benchmark---outperforming Kiperwasser Goldberg (2016) by 1.8% and 2.2%---and comparable to the highest performing transition-based parser (Kuncoro et al., 2016), which achieves 95.8% UAS and 94.6% LAS. We also show which hyperparameter choices had a significant effect on parsing accuracy, allowing us to achieve large gains over other graph-based approaches.
科研通智能强力驱动
Strongly Powered by AbleSci AI