茉莉酸
拟南芥
TOR信号
转录组
生物
茉莉酸甲酯
茉莉酸
突变体
细胞生物学
串扰
转基因
信号转导
基因
遗传学
基因表达
物理
光学
作者
Yun Song,Ge Zhao,Xueyan Zhang,Linxuan Li,Fei Xiong,Fei Zhuo,Chaojun Zhang,Zuoren Yang,Raju Datla,Maozhi Ren,Fuguang Li
摘要
Target of rapamycin (TOR) acts as an important regulator of cell growth, development and stress responses in most examined diploid eukaryotes. However, little is known about TOR in tetraploid species such as cotton. Here, we show that TORC1-S6K-RPS6, the major signaling components, are conserved and further expanded in cotton genome. Though the cotton seedlings are insensitive to rapamycin, AZD8055, the second-generation inhibitor of TOR, can significantly suppress the growth in cotton. Global transcriptome analysis revealed that genes associated with jasmonic acid (JA) biosynthesis and transduction were significantly altered in AZD8055 treated cotton seedlings, suggesting the potential crosstalk between TOR and JA signaling. Pharmacological and genetic approaches have been employed to get further insights into the molecular mechanism of the crosstalk between TOR and JA. Combination of AZD8055 with methyl jasmonate can synergistically inhibit cotton growth, and additionally JA levels were significantly increased when cotton seedlings were subjected to AZD8055. JA biosynthetic and signaling mutants including jar1, coi1-2 and myc2-2 displayed TOR inhibitor-resistant phenotypes, whereas COI1 overexpression transgenic lines and jaz10 exhibited sensitivity to AZD8055. Consistently, cotton JAZ can partially rescue TOR-suppressed phenotypes in Arabidopsis. These evidences revealed that the crosstalk between TOR and JA pathway operates in cotton and Arabidopsis.
科研通智能强力驱动
Strongly Powered by AbleSci AI