物理
湍流
光学
涡流
旋涡
光束
光通信
角动量
梁(结构)
高斯光束
计算物理学
经典力学
机械
作者
Mingjian Cheng,Lixin Guo,Jiangting Li,Qingqing Huang,Qi Cheng,Dan Zhang
出处
期刊:Applied optics
[The Optical Society]
日期:2016-06-07
卷期号:55 (17): 4642-4642
被引量:97
摘要
The analytical formulas for the orbital angular momentum (OAM) mode probability density, signal OAM mode detection probability, and spiral spectrum of partially coherent Laguerre-Gaussian (LG) beams with optical vortices propagation in weak horizontal oceanic turbulent channels were developed, based on the Rytov approximation theory. The effect of oceanic turbulence and beam source parameters on the propagation behavior of the optical vortices carried by partially coherent LG beams was investigated in detail. Our results indicated that optical turbulence in an ocean environment produced a much stronger effect on the optical vortex than that in an atmosphere environment; the effective range of the signal OAM mode of LG beams with a smaller ratio of the mode crosstalk was limited to only several tens of meters in turbulent ocean. The existence of oceanic turbulence evidently induced OAM mode crosstalk and spiral spectrum spread. The effects of oceanic turbulence on the OAM mode detection probability increased with the increase of radial and azimuthal mode orders, oceanic turbulent equivalent temperature structure parameter, and temperature-salinity balance parameter. The spatial partial coherence of the beam source would enhance the effect of turbulent aberrations on the signal OAM mode detection probability, and fully coherent vortex beams provided better performance than partially coherent ones. Increasing wavelength of the vortex beams would help improve the performance of this quantum optical communication system. These results might be of interest for the potential application of optical vortices in practical underwater quantum optical communication among divers, submarines, and sensors in the ocean environment.
科研通智能强力驱动
Strongly Powered by AbleSci AI