亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Genome scale search of noncoding rnas: bacteria to vertebrates

计算生物学 非编码RNA 核糖核酸 基因组 计算机科学 可扩展性 主题(音乐) 概率逻辑 生物 理论计算机科学 人工智能 遗传学 基因 物理 数据库 声学
作者
Walter L. Ruzzo,Zizhen Yao
链接
摘要

Traditionally scientists believed that, with a few key exceptions, RNAs played a secondary role in the cell. Recent discoveries have sharply revised this simple picture, revealing widespread and surprisingly sophisticated functional roles of RNAs. Discovery of new functional RNA elements remains a very challenging task, both computationally and experimentally. It is computationally difficult largely because of the importance of an RNA molecule's 3-D structure, and the fact that molecules with very different nucleotide sequences can fold into the same shape. In this thesis, we describe a computational tool called CMfinder that addresses the RNA motif discovery problem. It is one of the most effective tools for constructing multiple local structural alignments. It can extract an RNA motif from unaligned sequences with long extraneous flanking regions, and in cases when the motif is only present in a subset of sequences. On the basis of the original CMfinder, we propose several speedup techniques, which make this tool scalable to large datasets. Another important problem regarding ncRNA discovery is to evaluate the significance of a predicted RNA motif, which is critical to sift high quality ncRNA candidates from an enormous number of predictions produced in a genome scale scan. We have designed two ranking schemes to address this problem in different application settings. The first is a heuristic method that is generally applicable, and the second is a probabilistic method based on the evolution theory. While we have effectively rediscovered known ncRNAs and obtained promising candidates using the first method, we found that the second behaves more robustly and has better statistical properties. The second scheme, however, requires a phylogeny of input sequences, which can be difficult to be obtained in some applications. We have great success in applying CMfinder in genome scale discovery of noncoding RNAs. In particular, we applied a CMfinder centered computational pipeline to all bacteria, and found 22 novel putative RNA motifs. Six are high quality riboswitches candidates, and five have been confirmed as novel riboswitches in separate studies. We have also tested CMfinder in vertebrate ENCODE regions. This study produced thousands of candidates, most of which are not covered by any previous studies. Closer examination of these candidates suggests that CMfinder revised the alignment significantly compared to the multiple alignment based on the sequence only, and consequently, strongly argues for taking RNA structure directly into account in any searches for such structural elements. We have experimentally validated eleven top ranking candidates, and found transcription activities and tissue specificities for most of them. We are now in the process of applying CMfinder to search the whole human genome. Our experiences have demonstrated that CMfinder can accelerate significantly the discovery of novel ncRNAs, with promises of many more discoveries to come.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
2秒前
20秒前
搞怪元瑶发布了新的文献求助10
20秒前
Owen应助朴实老虎采纳,获得10
31秒前
赘婿应助ppat5012采纳,获得10
35秒前
乐乐应助怕黑延恶采纳,获得10
37秒前
45秒前
ppat5012发布了新的文献求助10
48秒前
52秒前
怕黑延恶发布了新的文献求助10
56秒前
1分钟前
1分钟前
朴实老虎发布了新的文献求助10
1分钟前
Akim应助jicm采纳,获得10
1分钟前
1分钟前
1分钟前
xiaomanhuang关注了科研通微信公众号
1分钟前
1分钟前
1分钟前
linjiaxin完成签到,获得积分10
1分钟前
xiaomanhuang发布了新的文献求助10
1分钟前
lotus完成签到,获得积分10
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
pass完成签到 ,获得积分10
2分钟前
白天科室黑奴and晚上实验室牛马完成签到 ,获得积分10
2分钟前
朴实老虎完成签到,获得积分10
3分钟前
3分钟前
3分钟前
xiaomanhuang完成签到,获得积分10
3分钟前
3分钟前
4分钟前
雪白元风完成签到 ,获得积分10
4分钟前
4分钟前
阳阳杜完成签到 ,获得积分10
4分钟前
zqq完成签到,获得积分0
5分钟前
5分钟前
5分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3256896
求助须知:如何正确求助?哪些是违规求助? 2899004
关于积分的说明 8303214
捐赠科研通 2568222
什么是DOI,文献DOI怎么找? 1394953
科研通“疑难数据库(出版商)”最低求助积分说明 652925
邀请新用户注册赠送积分活动 630662