Genome scale search of noncoding rnas: bacteria to vertebrates

计算生物学 非编码RNA 核糖核酸 基因组 计算机科学 可扩展性 主题(音乐) 概率逻辑 生物 理论计算机科学 人工智能 遗传学 基因 物理 数据库 声学
作者
Walter L. Ruzzo,Zizhen Yao
链接
摘要

Traditionally scientists believed that, with a few key exceptions, RNAs played a secondary role in the cell. Recent discoveries have sharply revised this simple picture, revealing widespread and surprisingly sophisticated functional roles of RNAs. Discovery of new functional RNA elements remains a very challenging task, both computationally and experimentally. It is computationally difficult largely because of the importance of an RNA molecule's 3-D structure, and the fact that molecules with very different nucleotide sequences can fold into the same shape. In this thesis, we describe a computational tool called CMfinder that addresses the RNA motif discovery problem. It is one of the most effective tools for constructing multiple local structural alignments. It can extract an RNA motif from unaligned sequences with long extraneous flanking regions, and in cases when the motif is only present in a subset of sequences. On the basis of the original CMfinder, we propose several speedup techniques, which make this tool scalable to large datasets. Another important problem regarding ncRNA discovery is to evaluate the significance of a predicted RNA motif, which is critical to sift high quality ncRNA candidates from an enormous number of predictions produced in a genome scale scan. We have designed two ranking schemes to address this problem in different application settings. The first is a heuristic method that is generally applicable, and the second is a probabilistic method based on the evolution theory. While we have effectively rediscovered known ncRNAs and obtained promising candidates using the first method, we found that the second behaves more robustly and has better statistical properties. The second scheme, however, requires a phylogeny of input sequences, which can be difficult to be obtained in some applications. We have great success in applying CMfinder in genome scale discovery of noncoding RNAs. In particular, we applied a CMfinder centered computational pipeline to all bacteria, and found 22 novel putative RNA motifs. Six are high quality riboswitches candidates, and five have been confirmed as novel riboswitches in separate studies. We have also tested CMfinder in vertebrate ENCODE regions. This study produced thousands of candidates, most of which are not covered by any previous studies. Closer examination of these candidates suggests that CMfinder revised the alignment significantly compared to the multiple alignment based on the sequence only, and consequently, strongly argues for taking RNA structure directly into account in any searches for such structural elements. We have experimentally validated eleven top ranking candidates, and found transcription activities and tissue specificities for most of them. We are now in the process of applying CMfinder to search the whole human genome. Our experiences have demonstrated that CMfinder can accelerate significantly the discovery of novel ncRNAs, with promises of many more discoveries to come.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HMZ完成签到,获得积分10
1秒前
香蕉觅云应助胡萝卜采纳,获得10
2秒前
Patrick完成签到,获得积分10
2秒前
3秒前
枝头树上的布谷鸟完成签到 ,获得积分10
4秒前
siji完成签到,获得积分10
4秒前
酷波er应助冰淇淋采纳,获得10
5秒前
科研通AI2S应助zzzy采纳,获得10
6秒前
lin完成签到 ,获得积分10
7秒前
Lewis完成签到,获得积分20
7秒前
7秒前
8秒前
立羽完成签到 ,获得积分10
8秒前
alixy完成签到,获得积分10
8秒前
9秒前
9秒前
小李儿发布了新的文献求助10
9秒前
超级小张完成签到,获得积分20
10秒前
10秒前
波安班完成签到,获得积分10
10秒前
Lewis发布了新的文献求助20
11秒前
传奇3应助迷路的煎蛋采纳,获得10
12秒前
congcong发布了新的文献求助10
12秒前
13秒前
蜂蜜完成签到,获得积分10
13秒前
蓝桉完成签到 ,获得积分10
14秒前
张景灿完成签到,获得积分10
14秒前
蘇q完成签到 ,获得积分10
15秒前
15秒前
16秒前
17秒前
nous完成签到,获得积分10
17秒前
11完成签到,获得积分10
18秒前
西西完成签到,获得积分10
18秒前
18秒前
Wang_ZiMo发布了新的文献求助10
19秒前
海绵宝宝的做饭铲完成签到,获得积分10
19秒前
19秒前
yuuka发布了新的文献求助10
20秒前
Wang驳回了李健应助
20秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379192
求助须知:如何正确求助?哪些是违规求助? 4503605
关于积分的说明 14016048
捐赠科研通 4412336
什么是DOI,文献DOI怎么找? 2423761
邀请新用户注册赠送积分活动 1416652
关于科研通互助平台的介绍 1394188