已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Superpixel-Based Multitask Learning Framework for Hyperspectral Image Classification

高光谱成像 人工智能 判别式 支持向量机 模式识别(心理学) 计算机科学 维数之咒 计算机视觉
作者
Sen Jia,Bin Deng,Jiasong Zhu,Xiuping Jia,Qingquan Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:55 (5): 2575-2588 被引量:46
标识
DOI:10.1109/tgrs.2017.2647815
摘要

Due to the high spectral dimensionality of hyperspectral images as well as the difficult and time-consuming process of collecting sufficient labeled samples in practice, the small sample size scenario is one crucial problem and a challenging issue for hyperspectral image classification. Fortunately, the structure information of materials, reflecting region of homogeneity in the spatial domain, offers an invaluable complement to the spectral information. Assuming some spatial regularity and locality of surface materials, it is reasonable to segment the image into different homogeneous parts in advance, called superpixel, which can be used to improve the classification performance. In this paper, a superpixel-based multitask learning framework has been proposed for hyperspectral image classification. Specifically, a set of 2-D Gabor filters are first applied to hyperspectral images to extract discriminative features. Meanwhile, a superpixel map is generated from the hyperspectral images. Second, a superpixel-based spatial-spectral Schroedinger eigenmaps (S 4 E) method is adopted to effectively reduce the dimensions of each extracted Gabor cube. Finally, the classification is carried out by a support vector machine (SVM)-based multitask learning framework. The proposed approach is thus termed Gabor S 4 E and SVM-based multitask learning (GS 4 E-MTLSVM). A series of experiments is conducted on three real hyperspectral image data sets to demonstrate the effectiveness of the proposed GS 4 E-MTLSVM approach. The experimental results show that the performance of the proposed GS 4 E-MTLSVM is better than those of several state-of-the-art methods, while the computational complexity has been greatly reduced, compared with the pixel-based spatial-spectral Schroedinger eigenmaps method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
最好我儿长柏高中完成签到,获得积分10
7秒前
科研通AI5应助SpongeBob采纳,获得10
7秒前
清茶一抹完成签到,获得积分20
7秒前
8秒前
9秒前
落后的凝梦完成签到 ,获得积分10
10秒前
10秒前
lenny发布了新的文献求助10
12秒前
13秒前
15秒前
水月中辉完成签到,获得积分10
17秒前
17秒前
17秒前
17秒前
healer发布了新的文献求助10
19秒前
机智的誉发布了新的文献求助10
20秒前
包包发布了新的文献求助10
21秒前
独特的小吴完成签到 ,获得积分10
23秒前
24秒前
26秒前
27秒前
30秒前
taohui发布了新的文献求助10
31秒前
Zenglongying发布了新的文献求助10
31秒前
科研通AI5应助秋日思语采纳,获得10
31秒前
34秒前
w5566完成签到 ,获得积分10
35秒前
Light给qipilang100的求助进行了留言
37秒前
酷波er应助MoMo采纳,获得10
44秒前
ziyewutong完成签到,获得积分10
47秒前
51秒前
53秒前
雪白秋柔完成签到 ,获得积分10
55秒前
56秒前
爱学习的小李完成签到 ,获得积分10
57秒前
59秒前
59秒前
1分钟前
1分钟前
wzh完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3757910
求助须知:如何正确求助?哪些是违规求助? 3300975
关于积分的说明 10115857
捐赠科研通 3015439
什么是DOI,文献DOI怎么找? 1656044
邀请新用户注册赠送积分活动 790218
科研通“疑难数据库(出版商)”最低求助积分说明 753659