Phosphate as a Signaling Molecule and Its Sensing Mechanism

信号转导 机制(生物学) 细胞生物学 生物 生物化学 磷酸盐 化学 计算生物学 生物物理学 物理 量子力学
作者
Toshimi Michigami,Masanobu Kawai,Miwa Yamazaki,Keiichi Ozono
出处
期刊:Physiological Reviews [American Physiological Society]
卷期号:98 (4): 2317-2348 被引量:135
标识
DOI:10.1152/physrev.00022.2017
摘要

In mammals, phosphate balance is maintained by influx and efflux via the intestines, kidneys, bone, and soft tissue, which involves multiple sodium/phosphate (Na+/Pi) cotransporters, as well as regulation by several hormones. Alterations in the levels of extracellular phosphate exert effects on both skeletal and extra-skeletal tissues, and accumulating evidence has suggested that phosphate itself evokes signal transduction to regulate gene expression and cell behavior. Several in vitro studies have demonstrated that an elevation in extracellular Pi activates fibroblast growth factor receptor, Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK (extracellular signal-regulated kinase) pathway and Akt pathway, which might involve the type III Na+/Pi cotransporter PiT-1. Excessive phosphate loading can lead to various harmful effects by accelerating ectopic calcification, enhancing oxidative stress, and dysregulating signal transduction. The responsiveness of mammalian cells to altered extracellular phosphate levels suggests that they may sense and adapt to phosphate availability, although the precise mechanism for phosphate sensing in mammals remains unclear. Unicellular organisms, such as bacteria and yeast, use some types of Pi transporters and other molecules, such as kinases, to sense the environmental Pi availability. Multicellular animals may need to integrate signals from various organs to sense the phosphate levels as a whole organism, similarly to higher plants. Clarification of the phosphate-sensing mechanism in humans may lead to the development of new therapeutic strategies to prevent and treat diseases caused by phosphate imbalance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
Jasper应助开朗的曼越梅采纳,获得10
1秒前
clean发布了新的文献求助10
1秒前
2秒前
肖雪依完成签到,获得积分20
2秒前
小蘑菇应助小唐采纳,获得10
5秒前
5秒前
所所应助曦月采纳,获得10
6秒前
Puan发布了新的文献求助10
6秒前
6秒前
hongxing liu完成签到,获得积分10
6秒前
在水一方应助洁净的灭绝采纳,获得10
7秒前
8秒前
小鹿发布了新的文献求助10
8秒前
李健应助Binbin采纳,获得10
8秒前
上原步梦发布了新的文献求助10
8秒前
繁荣的秋发布了新的文献求助10
9秒前
CodeCraft应助么么哒大王采纳,获得10
10秒前
11秒前
冷静孤容发布了新的文献求助10
11秒前
风味烤羊腿完成签到,获得积分0
12秒前
Puan完成签到,获得积分10
13秒前
14秒前
小唐完成签到,获得积分10
14秒前
加减乘除发布了新的文献求助10
14秒前
14秒前
科研通AI5应助DZM采纳,获得10
15秒前
李健的粉丝团团长应助LKF采纳,获得10
16秒前
16秒前
酷波er应助小滕采纳,获得10
16秒前
16秒前
要加油呀完成签到,获得积分10
17秒前
17秒前
18秒前
小唐发布了新的文献求助10
19秒前
曦月发布了新的文献求助10
19秒前
开心泥猴桃完成签到,获得积分10
20秒前
思源应助sasha采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542861
求助须知:如何正确求助?哪些是违规求助? 3120134
关于积分的说明 9341680
捐赠科研通 2818200
什么是DOI,文献DOI怎么找? 1549414
邀请新用户注册赠送积分活动 722131
科研通“疑难数据库(出版商)”最低求助积分说明 712978