Phosphate as a Signaling Molecule and Its Sensing Mechanism

信号转导 机制(生物学) 细胞生物学 生物 生物化学 磷酸盐 化学 计算生物学 生物物理学 物理 量子力学
作者
Toshimi Michigami,Masanobu Kawai,Miwa Yamazaki,Keiichi Ozono
出处
期刊:Physiological Reviews [American Physiological Society]
卷期号:98 (4): 2317-2348 被引量:135
标识
DOI:10.1152/physrev.00022.2017
摘要

In mammals, phosphate balance is maintained by influx and efflux via the intestines, kidneys, bone, and soft tissue, which involves multiple sodium/phosphate (Na+/Pi) cotransporters, as well as regulation by several hormones. Alterations in the levels of extracellular phosphate exert effects on both skeletal and extra-skeletal tissues, and accumulating evidence has suggested that phosphate itself evokes signal transduction to regulate gene expression and cell behavior. Several in vitro studies have demonstrated that an elevation in extracellular Pi activates fibroblast growth factor receptor, Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK (extracellular signal-regulated kinase) pathway and Akt pathway, which might involve the type III Na+/Pi cotransporter PiT-1. Excessive phosphate loading can lead to various harmful effects by accelerating ectopic calcification, enhancing oxidative stress, and dysregulating signal transduction. The responsiveness of mammalian cells to altered extracellular phosphate levels suggests that they may sense and adapt to phosphate availability, although the precise mechanism for phosphate sensing in mammals remains unclear. Unicellular organisms, such as bacteria and yeast, use some types of Pi transporters and other molecules, such as kinases, to sense the environmental Pi availability. Multicellular animals may need to integrate signals from various organs to sense the phosphate levels as a whole organism, similarly to higher plants. Clarification of the phosphate-sensing mechanism in humans may lead to the development of new therapeutic strategies to prevent and treat diseases caused by phosphate imbalance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冬阳完成签到,获得积分10
1秒前
spcwlh完成签到 ,获得积分10
2秒前
milly发布了新的文献求助10
4秒前
5秒前
orixero应助积极的花卷采纳,获得10
6秒前
8秒前
孤独梦安完成签到 ,获得积分10
8秒前
脑洞疼应助竹蜻蜓采纳,获得10
10秒前
13秒前
coco完成签到 ,获得积分10
13秒前
aha发布了新的文献求助10
13秒前
zt完成签到,获得积分20
13秒前
酷波er应助12采纳,获得50
14秒前
沉静亦寒完成签到 ,获得积分10
17秒前
天天快乐应助nusaber采纳,获得10
18秒前
沉静凡松发布了新的文献求助10
18秒前
烟花应助云海采纳,获得10
19秒前
21秒前
21秒前
21秒前
doudou完成签到 ,获得积分10
22秒前
西瓜撞地球完成签到 ,获得积分10
22秒前
afar完成签到,获得积分10
22秒前
aha完成签到,获得积分10
24秒前
25秒前
afar发布了新的文献求助10
26秒前
26秒前
冷傲含海发布了新的文献求助10
27秒前
zhaoyuli完成签到,获得积分10
27秒前
云海发布了新的文献求助10
31秒前
警察同志听我解释完成签到,获得积分10
31秒前
32秒前
山谷完成签到,获得积分10
32秒前
flyingpig完成签到,获得积分10
33秒前
syh5527029完成签到 ,获得积分10
34秒前
34秒前
彭于晏应助盛夏采纳,获得10
35秒前
35秒前
冷傲松鼠完成签到 ,获得积分10
36秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560834
求助须知:如何正确求助?哪些是违规求助? 4646178
关于积分的说明 14677685
捐赠科研通 4587278
什么是DOI,文献DOI怎么找? 2516949
邀请新用户注册赠送积分活动 1490355
关于科研通互助平台的介绍 1461160