Integrative Analysis of Pathological Images and Multi-Dimensional Genomic Data for Early-Stage Cancer Prognosis

计算机科学 计算生物学 表观遗传学 生物 DNA甲基化 特征选择 人工智能 癌症 生物信息学 遗传学 基因 基因表达
作者
Wei Shao,Kun Huang,Zhi Han,Jun Cheng,Liang Cheng,Tongxin Wang,Liang Sun,Zixiao Lu,Jie Zhang,Daoqiang Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (1): 99-110 被引量:62
标识
DOI:10.1109/tmi.2019.2920608
摘要

The integrative analysis of histopathological images and genomic data has received increasing attention for studying the complex mechanisms of driving cancers. However, most image-genomic studies have been restricted to combining histopathological images with the single modality of genomic data (e.g., mRNA transcription or genetic mutation), and thus neglect the fact that the molecular architecture of cancer is manifested at multiple levels, including genetic, epigenetic, transcriptional, and post-transcriptional events. To address this issue, we propose a novel ordinal multi-modal feature selection (OMMFS) framework that can simultaneously identify important features from both pathological images and multi-modal genomic data (i.e., mRNA transcription, copy number variation, and DNA methylation data) for the prognosis of cancer patients. Our model is based on a generalized sparse canonical correlation analysis framework, by which we also take advantage of the ordinal survival information among different patients for survival outcome prediction. We evaluate our method on three early-stage cancer datasets derived from The Cancer Genome Atlas (TCGA) project, and the experimental results demonstrated that both the selected image and multi-modal genomic markers are strongly correlated with survival enabling effective stratification of patients with distinct survival than the comparing methods, which is often difficult for early-stage cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TOF发布了新的文献求助10
刚刚
harmony完成签到 ,获得积分10
2秒前
2秒前
Singularity发布了新的文献求助10
3秒前
3秒前
4秒前
称心的冥幽完成签到,获得积分10
7秒前
sush1hang发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
单薄归尘完成签到 ,获得积分10
10秒前
lfl发布了新的文献求助10
11秒前
12秒前
13秒前
14秒前
慕青应助Echodeng采纳,获得10
15秒前
拓扑超导相变完成签到,获得积分10
16秒前
17秒前
17秒前
没有银发布了新的文献求助30
17秒前
涂楚捷发布了新的文献求助10
17秒前
香蕉觅云应助白露为霜采纳,获得10
18秒前
18秒前
cs发布了新的文献求助10
19秒前
桐桐应助芒果好高采纳,获得10
19秒前
20秒前
20秒前
璐璐发布了新的文献求助10
21秒前
Saunak完成签到,获得积分10
21秒前
22秒前
22秒前
Xzzp发布了新的文献求助10
22秒前
sir发布了新的文献求助10
23秒前
23秒前
28秒前
万能图书馆应助sir采纳,获得10
30秒前
李健的小迷弟应助宸1采纳,获得10
30秒前
123完成签到 ,获得积分10
30秒前
从容芮应助风中夜天采纳,获得10
31秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125620
求助须知:如何正确求助?哪些是违规求助? 2775921
关于积分的说明 7728309
捐赠科研通 2431379
什么是DOI,文献DOI怎么找? 1291979
科研通“疑难数据库(出版商)”最低求助积分说明 622295
版权声明 600376