Integrative Analysis of Pathological Images and Multi-Dimensional Genomic Data for Early-Stage Cancer Prognosis

计算机科学 计算生物学 表观遗传学 生物 DNA甲基化 特征选择 人工智能 癌症 生物信息学 遗传学 基因 基因表达
作者
Wei Shao,Kun Huang,Zhi Han,Jun Cheng,Liang Cheng,Tongxin Wang,Liang Sun,Zixiao Lu,Jie Zhang,Daoqiang Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (1): 99-110 被引量:78
标识
DOI:10.1109/tmi.2019.2920608
摘要

The integrative analysis of histopathological images and genomic data has received increasing attention for studying the complex mechanisms of driving cancers. However, most image-genomic studies have been restricted to combining histopathological images with the single modality of genomic data (e.g., mRNA transcription or genetic mutation), and thus neglect the fact that the molecular architecture of cancer is manifested at multiple levels, including genetic, epigenetic, transcriptional, and post-transcriptional events. To address this issue, we propose a novel ordinal multi-modal feature selection (OMMFS) framework that can simultaneously identify important features from both pathological images and multi-modal genomic data (i.e., mRNA transcription, copy number variation, and DNA methylation data) for the prognosis of cancer patients. Our model is based on a generalized sparse canonical correlation analysis framework, by which we also take advantage of the ordinal survival information among different patients for survival outcome prediction. We evaluate our method on three early-stage cancer datasets derived from The Cancer Genome Atlas (TCGA) project, and the experimental results demonstrated that both the selected image and multi-modal genomic markers are strongly correlated with survival enabling effective stratification of patients with distinct survival than the comparing methods, which is often difficult for early-stage cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
uupp完成签到,获得积分10
1秒前
兴奋的定帮应助虚心的岩采纳,获得10
1秒前
朽木发布了新的文献求助20
1秒前
swjs08完成签到,获得积分10
2秒前
zhaopeipei完成签到,获得积分10
2秒前
2秒前
向上走发布了新的文献求助10
3秒前
Queen发布了新的文献求助10
3秒前
4秒前
阿强完成签到,获得积分10
4秒前
4秒前
跳跃雨泽发布了新的文献求助10
4秒前
enchanted发布了新的文献求助10
5秒前
元气糖完成签到 ,获得积分10
5秒前
伶俐楷瑞完成签到,获得积分10
6秒前
6秒前
陶醉世德发布了新的文献求助10
6秒前
三寿完成签到,获得积分10
6秒前
Orange应助谨慎不二采纳,获得10
7秒前
Sue应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
科研乞丐应助科研通管家采纳,获得20
7秒前
7秒前
7秒前
Ava应助科研通管家采纳,获得10
7秒前
zs1234完成签到,获得积分10
7秒前
给我好好读书完成签到,获得积分10
8秒前
8秒前
HuuuuD应助不安青牛采纳,获得10
8秒前
8秒前
和谐白云完成签到,获得积分10
9秒前
hhhhhh应助寄居蟹采纳,获得30
9秒前
麦格布丁完成签到,获得积分10
9秒前
10秒前
桐桐应助Queen采纳,获得10
10秒前
江莱发布了新的文献求助10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009462
求助须知:如何正确求助?哪些是违规求助? 3549388
关于积分的说明 11301996
捐赠科研通 3283894
什么是DOI,文献DOI怎么找? 1810448
邀请新用户注册赠送积分活动 886287
科研通“疑难数据库(出版商)”最低求助积分说明 811316