Deep Convolutional Neural Networks Enable Discrimination of Heterogeneous Digital Pathology Images

卷积神经网络 计算机科学 人工智能 深度学习 管道(软件) 数字化病理学 乳腺癌 癌症 模式识别(心理学) 机器学习 病理 医学 内科学 程序设计语言
作者
Pegah Khosravi,Ehsan Kazemi,Marcin Imieliński,Olivier Elemento,Iman Hajirasouliha
出处
期刊:EBioMedicine [Elsevier BV]
卷期号:27: 317-328 被引量:242
标识
DOI:10.1016/j.ebiom.2017.12.026
摘要

Pathological evaluation of tumor tissue is pivotal for diagnosis in cancer patients and automated image analysis approaches have great potential to increase precision of diagnosis and help reduce human error.In this study, we utilize several computational methods based on convolutional neural networks (CNN) and build a stand-alone pipeline to effectively classify different histopathology images across different types of cancer.In particular, we demonstrate the utility of our pipeline to discriminate between two subtypes of lung cancer, four biomarkers of bladder cancer, and five biomarkers of breast cancer. In addition, we apply our pipeline to discriminate among four immunohistochemistry (IHC) staining scores of bladder and breast cancers.Our classification pipeline includes a basic CNN architecture, Google's Inceptions with three training strategies, and an ensemble of two state-of-the-art algorithms, Inception and ResNet. Training strategies include training the last layer of Google's Inceptions, training the network from scratch, and fine-tunning the parameters for our data using two pre-trained version of Google's Inception architectures, Inception-V1 and Inception-V3.We demonstrate the power of deep learning approaches for identifying cancer subtypes, and the robustness of Google's Inceptions even in presence of extensive tumor heterogeneity. On average, our pipeline achieved accuracies of 100%, 92%, 95%, and 69% for discrimination of various cancer tissues, subtypes, biomarkers, and scores, respectively. Our pipeline and related documentation is freely available at https://github.com/ih-_lab/CNN_Smoothie.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助莫西莫西采纳,获得10
刚刚
刚刚
刘源发布了新的文献求助10
刚刚
科研通AI2S应助认真以寒采纳,获得10
刚刚
八一完成签到,获得积分10
刚刚
mumu发布了新的文献求助10
刚刚
1秒前
赘婿应助炙热怜寒采纳,获得30
2秒前
Hans发布了新的文献求助20
2秒前
田様应助埋骨何须桑梓地采纳,获得10
2秒前
八一发布了新的文献求助10
3秒前
暖暖的禾日完成签到,获得积分10
3秒前
yuky发布了新的文献求助10
4秒前
默默向雪完成签到,获得积分0
4秒前
YJJ完成签到,获得积分10
4秒前
4秒前
4秒前
斯文败类应助Demonmaster采纳,获得10
5秒前
甜甜完成签到 ,获得积分10
5秒前
6秒前
我是老大应助网再快点采纳,获得10
6秒前
6秒前
束负允三金完成签到,获得积分10
6秒前
yookia举报小海狸求助涉嫌违规
7秒前
7秒前
p二完成签到,获得积分10
7秒前
情怀应助优美的幻梦采纳,获得10
8秒前
9秒前
9秒前
无所归兮应助烟雨梦兮采纳,获得10
9秒前
lixy完成签到,获得积分10
10秒前
10秒前
大模型应助八一采纳,获得10
10秒前
10秒前
10秒前
FashionBoy应助YJJ采纳,获得10
10秒前
夕诙完成签到,获得积分0
10秒前
腼腆的以蕊完成签到,获得积分20
11秒前
11秒前
钟小凯完成签到 ,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600