Deep Convolutional Neural Networks Enable Discrimination of Heterogeneous Digital Pathology Images

卷积神经网络 计算机科学 人工智能 深度学习 管道(软件) 数字化病理学 乳腺癌 癌症 模式识别(心理学) 机器学习 病理 医学 内科学 程序设计语言
作者
Pegah Khosravi,Ehsan Kazemi,Marcin Imieliński,Olivier Elemento,Iman Hajirasouliha
出处
期刊:EBioMedicine [Elsevier BV]
卷期号:27: 317-328 被引量:242
标识
DOI:10.1016/j.ebiom.2017.12.026
摘要

Pathological evaluation of tumor tissue is pivotal for diagnosis in cancer patients and automated image analysis approaches have great potential to increase precision of diagnosis and help reduce human error.In this study, we utilize several computational methods based on convolutional neural networks (CNN) and build a stand-alone pipeline to effectively classify different histopathology images across different types of cancer.In particular, we demonstrate the utility of our pipeline to discriminate between two subtypes of lung cancer, four biomarkers of bladder cancer, and five biomarkers of breast cancer. In addition, we apply our pipeline to discriminate among four immunohistochemistry (IHC) staining scores of bladder and breast cancers.Our classification pipeline includes a basic CNN architecture, Google's Inceptions with three training strategies, and an ensemble of two state-of-the-art algorithms, Inception and ResNet. Training strategies include training the last layer of Google's Inceptions, training the network from scratch, and fine-tunning the parameters for our data using two pre-trained version of Google's Inception architectures, Inception-V1 and Inception-V3.We demonstrate the power of deep learning approaches for identifying cancer subtypes, and the robustness of Google's Inceptions even in presence of extensive tumor heterogeneity. On average, our pipeline achieved accuracies of 100%, 92%, 95%, and 69% for discrimination of various cancer tissues, subtypes, biomarkers, and scores, respectively. Our pipeline and related documentation is freely available at https://github.com/ih-_lab/CNN_Smoothie.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lihua完成签到,获得积分10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
Up发布了新的文献求助10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
SciGPT应助亦犹未进采纳,获得10
4秒前
科研通AI5应助学术版7e采纳,获得10
4秒前
完美世界应助木cheng采纳,获得10
4秒前
量子星尘发布了新的文献求助50
4秒前
Jasper应助rice0601采纳,获得10
5秒前
李敬语完成签到,获得积分10
5秒前
8秒前
9秒前
科研通AI6应助王晰贺采纳,获得10
9秒前
Ryan发布了新的文献求助10
11秒前
11秒前
11秒前
nnn7完成签到,获得积分10
11秒前
为君求文完成签到,获得积分10
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950667
求助须知:如何正确求助?哪些是违规求助? 4213453
关于积分的说明 13104082
捐赠科研通 3995307
什么是DOI,文献DOI怎么找? 2186837
邀请新用户注册赠送积分活动 1202080
关于科研通互助平台的介绍 1115359