Model complexity improves the prediction of nonsuicidal self-injury.

心理学 自毁行为 毒物控制 伤害预防 临床心理学 人为因素与人体工程学 医疗急救 医学
作者
Kathryn R. Fox,Xieyining Huang,Kathryn P. Linthicum,Shirley B. Wang,Joseph C. Franklin,Jessica D. Ribeiro
出处
期刊:Journal of Consulting and Clinical Psychology [American Psychological Association]
卷期号:87 (8): 684-692 被引量:51
标识
DOI:10.1037/ccp0000421
摘要

Objective Efforts to predict nonsuicidal self-injury (NSSI; intentional self-injury enacted without suicidal intent) to date have resulted in near-chance accuracy. Incongruence between theoretical understanding of NSSI and the traditional statistical methods to predict these behaviors may explain this poor prediction. Whereas theoretical models of NSSI assume that the decision to engage in NSSI is relatively complex, statistical models used in NSSI prediction tend to involve simple models with only a few theoretically informed variables. The present study tested whether more complex statistical models would improve NSSI prediction. Method Within a sample of 1,021 high-risk self-injurious and/or suicidal individuals, we examined the accuracy of three different model types, of increasing complexity, in predicting NSSI across 3, 14, and 28 days. Univariate logistic regressions of each predictor and multiple logistic regression with all predictors were conducted for each timepoint and compared with machine learning algorithms derived from all predictors. Results Results demonstrated that model complexity was associated with predictive accuracy. Multiple logistic regression models (AUCs 0.70-0.72) outperformed univariate logistic models (average AUCs 0.56). Machine learning models that produced algorithms modeling complex associations across variables produced the strongest NSSI prediction across all time points (AUCs 0.87-0.90). These models outperformed all multiple logistic regression models, including those involving identical study variables. Machine learning algorithm performance remained strong even after the most important factor across algorithms was removed. Conclusions Results parallel recent findings in suicide research and highlight the complexity that underlies NSSI. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
整齐星月发布了新的文献求助10
刚刚
顾矜应助zkk采纳,获得10
3秒前
小丛发布了新的文献求助10
3秒前
4秒前
WeiPaiFXZ完成签到 ,获得积分10
4秒前
摸摸头发布了新的文献求助10
4秒前
廖无极完成签到 ,获得积分10
5秒前
5秒前
彭于晏应助板栗子采纳,获得10
5秒前
小蘑菇应助122采纳,获得10
6秒前
梁_完成签到,获得积分10
6秒前
风趣霆完成签到,获得积分10
8秒前
qqlan发布了新的文献求助10
9秒前
FashionBoy应助大贺呀采纳,获得10
10秒前
Frank发布了新的文献求助30
10秒前
雨滴1235完成签到,获得积分10
10秒前
11秒前
11秒前
整齐星月完成签到,获得积分10
12秒前
snail完成签到 ,获得积分10
12秒前
13秒前
Jasper应助vivi采纳,获得10
14秒前
华仔应助负责半蕾采纳,获得10
14秒前
zkk完成签到,获得积分10
14秒前
后山种仙草完成签到,获得积分10
14秒前
14秒前
混子发布了新的文献求助10
15秒前
hwq完成签到,获得积分10
15秒前
西早完成签到 ,获得积分10
15秒前
17秒前
Hello应助nannan采纳,获得10
17秒前
17秒前
joyidyll发布了新的文献求助10
19秒前
Swrur发布了新的文献求助10
19秒前
895_应助典雅的静采纳,获得10
20秒前
20秒前
21秒前
21秒前
21秒前
orixero应助一条蛆采纳,获得10
22秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 930
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3382635
求助须知:如何正确求助?哪些是违规求助? 2997175
关于积分的说明 8772748
捐赠科研通 2682483
什么是DOI,文献DOI怎么找? 1469158
科研通“疑难数据库(出版商)”最低求助积分说明 679271
邀请新用户注册赠送积分活动 671453