Reply to ‘Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists’ by Haenssle et al.

黑色素瘤 机器学习 计算机科学 人工神经网络 皮肤病科 模式识别(心理学)
作者
Luke Oakden-Rayner
出处
期刊:Annals of Oncology [Elsevier]
卷期号:30 (5): 854-854 被引量:14
标识
DOI:10.1093/annonc/mdy519
摘要

In a recently published article in the Annals of Oncology [1.Haenssle H. Fink C. Schneiderbauer R. et al.Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists.Ann Oncol. 2018; 29: 1836-1842Abstract Full Text Full Text PDF PubMed Scopus (649) Google Scholar], Haenssle et al. compare the performance of a deep learning model with that of 58 dermatologists. The article was of high general quality, yet their aspects of methodology requires clarification. First, they underestimate human performance by using a metric that they call the receiver operating characteristic (ROC) area. This is not the same metric as the ROC-area under the curve (AUC), which they compare it to. The ROC-AUC is the calculated area under the ROC curve, whereas the ROC area is the average of sensitivity and specificity at a given operating point. Comparing two different metrics as if they are the same is inappropriate. In this article, we as readers cannot calculate the ROC-AUC for the dermatologist group with the data provided, but we can calculate the ROC-area for the model at the specified operating points. These are presented in Table 1, which shows no difference between the model and dermatologists in these experiments.Table 1The performance of the CNN and dermatologists on the taskSensitivitySpecificityAUCROC areaCNN (0.5 threshold)9563.88679aROC area for the model (not presented in the article).Derm L186.671.3–79AUC, area under the curve; ROC, receiver operating characteristic curve.a ROC area for the model (not presented in the article). Open table in a new tab AUC, area under the curve; ROC, receiver operating characteristic curve. The authors also present sensitivity and specificity results at the level of human sensitivity. Second is that the mechanism for selecting this operating point is not stated, but it is likely this occurred post-experiment. We see evidence for this in the section ‘Diagnostic accuracy of CNN versus dermatologists’, where several operating points are chosen for the AI system, which appear to exactly match the level of human sensitivity. If this decision was made using the training data, the sensitivity on the test data would almost certainly be slightly different than the human level. I note that in Figure 2A of Haenssle et al., the ROC curve is very steep in both directions in the region of interest, and a very small change in operating point could lead to a very large reduction in either specificity or sensitivity (into the 70s for both metrics). This suggests that the model performance may be significantly overestimated. I expect the model of Haenssle et al. performs very well, but the methods applied overestimate the performance of the model and underestimate the performance of the human experts. The methodologies used require clarification and may raise questions about the validity of the results and the conclusions of the article. None declared.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助bestbanana采纳,获得10
刚刚
冬天完成签到,获得积分10
1秒前
含蓄文博完成签到 ,获得积分10
4秒前
细心无声完成签到 ,获得积分10
5秒前
快乐的凡霜完成签到 ,获得积分10
5秒前
jkaaa完成签到,获得积分10
6秒前
赵川完成签到 ,获得积分10
7秒前
boom完成签到 ,获得积分10
7秒前
overlood完成签到 ,获得积分10
10秒前
不会游泳的鱼完成签到 ,获得积分10
16秒前
20秒前
大岩石完成签到,获得积分10
21秒前
白衣胜雪完成签到 ,获得积分10
23秒前
丽莉发布了新的文献求助10
24秒前
医皛生完成签到 ,获得积分10
25秒前
Xiao完成签到,获得积分10
26秒前
shimenwanzhao完成签到 ,获得积分0
26秒前
Minjalee完成签到,获得积分0
28秒前
CipherSage应助木光采纳,获得10
30秒前
一个没自信的boy完成签到 ,获得积分10
30秒前
我是老大应助丽莉采纳,获得10
31秒前
搬砖人完成签到,获得积分10
31秒前
Zz完成签到 ,获得积分10
35秒前
皮卡丘完成签到 ,获得积分10
38秒前
乒坛巨人完成签到 ,获得积分10
39秒前
。。完成签到 ,获得积分10
41秒前
万能图书馆应助snow采纳,获得10
44秒前
swall5w完成签到,获得积分10
44秒前
腾腾完成签到 ,获得积分10
44秒前
46秒前
Orochimaru完成签到,获得积分10
49秒前
马大翔应助研友采纳,获得10
49秒前
落后妖妖完成签到 ,获得积分10
51秒前
reset完成签到 ,获得积分10
51秒前
yyhh发布了新的文献求助10
53秒前
yunxiao完成签到 ,获得积分10
56秒前
57秒前
1234完成签到 ,获得积分10
59秒前
1分钟前
东皇太憨完成签到,获得积分10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134035
求助须知:如何正确求助?哪些是违规求助? 2784845
关于积分的说明 7768930
捐赠科研通 2440286
什么是DOI,文献DOI怎么找? 1297361
科研通“疑难数据库(出版商)”最低求助积分说明 624945
版权声明 600792