Reply to ‘Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists’ by Haenssle et al.

黑色素瘤 机器学习 计算机科学 人工神经网络 皮肤病科 模式识别(心理学)
作者
Luke Oakden-Rayner
出处
期刊:Annals of Oncology [Elsevier BV]
卷期号:30 (5): 854-854 被引量:14
标识
DOI:10.1093/annonc/mdy519
摘要

In a recently published article in the Annals of Oncology [1.Haenssle H. Fink C. Schneiderbauer R. et al.Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists.Ann Oncol. 2018; 29: 1836-1842Abstract Full Text Full Text PDF PubMed Scopus (649) Google Scholar], Haenssle et al. compare the performance of a deep learning model with that of 58 dermatologists. The article was of high general quality, yet their aspects of methodology requires clarification. First, they underestimate human performance by using a metric that they call the receiver operating characteristic (ROC) area. This is not the same metric as the ROC-area under the curve (AUC), which they compare it to. The ROC-AUC is the calculated area under the ROC curve, whereas the ROC area is the average of sensitivity and specificity at a given operating point. Comparing two different metrics as if they are the same is inappropriate. In this article, we as readers cannot calculate the ROC-AUC for the dermatologist group with the data provided, but we can calculate the ROC-area for the model at the specified operating points. These are presented in Table 1, which shows no difference between the model and dermatologists in these experiments.Table 1The performance of the CNN and dermatologists on the taskSensitivitySpecificityAUCROC areaCNN (0.5 threshold)9563.88679aROC area for the model (not presented in the article).Derm L186.671.3–79AUC, area under the curve; ROC, receiver operating characteristic curve.a ROC area for the model (not presented in the article). Open table in a new tab AUC, area under the curve; ROC, receiver operating characteristic curve. The authors also present sensitivity and specificity results at the level of human sensitivity. Second is that the mechanism for selecting this operating point is not stated, but it is likely this occurred post-experiment. We see evidence for this in the section ‘Diagnostic accuracy of CNN versus dermatologists’, where several operating points are chosen for the AI system, which appear to exactly match the level of human sensitivity. If this decision was made using the training data, the sensitivity on the test data would almost certainly be slightly different than the human level. I note that in Figure 2A of Haenssle et al., the ROC curve is very steep in both directions in the region of interest, and a very small change in operating point could lead to a very large reduction in either specificity or sensitivity (into the 70s for both metrics). This suggests that the model performance may be significantly overestimated. I expect the model of Haenssle et al. performs very well, but the methods applied overestimate the performance of the model and underestimate the performance of the human experts. The methodologies used require clarification and may raise questions about the validity of the results and the conclusions of the article. None declared.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
心想事成完成签到,获得积分10
2秒前
Rutin发布了新的文献求助10
2秒前
研友_rLmNXn完成签到,获得积分10
4秒前
4秒前
5秒前
赵哥完成签到 ,获得积分10
5秒前
鑫鑫发布了新的文献求助10
6秒前
6秒前
小禹发布了新的文献求助30
7秒前
8秒前
脑洞疼应助ddd采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
段小麻完成签到,获得积分10
10秒前
10秒前
研友_ZGD9o8完成签到,获得积分10
10秒前
Hello应助难过的花生采纳,获得10
10秒前
11秒前
7777完成签到,获得积分20
11秒前
星辰大海应助monoklatt采纳,获得10
12秒前
zqqq发布了新的文献求助10
12秒前
思源应助wjw采纳,获得10
12秒前
wxq123发布了新的文献求助10
12秒前
楼carbon完成签到,获得积分10
13秒前
段小麻发布了新的文献求助10
13秒前
精忠报国完成签到,获得积分10
13秒前
图图完成签到 ,获得积分10
13秒前
14秒前
14秒前
yiyiyi完成签到 ,获得积分10
14秒前
yangminghan完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
轻松绿旋发布了新的文献求助150
16秒前
难过的花生完成签到,获得积分10
16秒前
17秒前
7777发布了新的文献求助10
18秒前
357发布了新的文献求助10
18秒前
现代的天完成签到 ,获得积分10
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3658707
求助须知:如何正确求助?哪些是违规求助? 3220706
关于积分的说明 9737132
捐赠科研通 2929876
什么是DOI,文献DOI怎么找? 1604142
邀请新用户注册赠送积分活动 757000
科研通“疑难数据库(出版商)”最低求助积分说明 734269