李普希茨连续性
非线性系统
迭代学习控制
趋同(经济学)
参数统计
计算机科学
控制理论(社会学)
投影(关系代数)
跟踪误差
特征(语言学)
功能(生物学)
数学优化
跟踪(教育)
数学
算法
控制(管理)
人工智能
哲学
心理学
教育学
经济
量子力学
数学分析
物理
语言学
经济增长
统计
生物
进化生物学
标识
DOI:10.1109/tnnls.2018.2861216
摘要
This paper proposes adaptive iterative learning control (ILC) schemes for continuous-time parametric nonlinear systems with iteration lengths that randomly vary. As opposed to the existing ILC works that feature nonuniform trial lengths, this paper is applicable to nonlinear systems that do not satisfy the globally Lipschitz continuous condition. In addition, this paper introduces a novel composite energy function based on newly defined virtual tracking error information for proving the asymptotical convergence. Both an original update algorithm and a projection-based update algorithm for estimating the unknown parameters are proposed. Extensions to cases with unknown input gains, iteration-varying tracking references, nonparametric uncertainty, high-order nonlinear systems, and multi-input-multi-output systems are all elaborated upon. Illustrative simulations are provided to verify the theoretical results.
科研通智能强力驱动
Strongly Powered by AbleSci AI