Acoustical siphon effect for reducing the thickness in membrane-type metamaterials with low-frequency broadband absorption

超材料 吸收(声学) 声学 材料科学 低频 次声 超材料吸收剂 共振(粒子物理) 振动 衰减系数 宽带 谐振器 光学 物理 光电子学 原子物理学 可调谐超材料 天文
作者
Chong Rui Liu,Jiu Hui Wu,Kuan Lu,Zi Ting Zhao,Zhifu Huang
出处
期刊:Applied Acoustics [Elsevier]
卷期号:148: 1-8 被引量:56
标识
DOI:10.1016/j.apacoust.2018.12.008
摘要

Acoustical siphon effect in membrane-type metamaterials for low-frequency broadband absorption is proposed, whose physical mechanism is further investigated by the theoretical analysis and finite element (FE) simulation. This kind of membrane-type metamaterials consists of multiple detuned units, each of which is composed of two aluminum platelets fasten on a piece of silicone membrane above an air cavity. For the multi-unit metamaterial illuminated by an incident plane wave with certain frequency, there exists a certain unit at resonance with maximum acoustic absorption, and meanwhile other units nearly keep static due to the narrow absorption peak of the resonant unit. Therefore, almost the whole incident energy can be forced to flow to this resonant unit resulting in a much enhanced vibration and a reduced acoustic impedance that could be more matchable to air medium, and thus much more acoustic absorption appears without increasing the unit thickness, which is called acoustical siphon effect of the unit. On this basis, by precisely designing the acoustical siphon effect of each unit, the broadband absorption can be obtained by a subwavelength six-unit sample in the low-frequency range of 400–650 Hz with the maximum absorption coefficient of almost 100% and the average absorption coefficient of about 80%, which is then verified by the corresponding experiment. The results presented here would offer a new approach for the metamaterials design for low-frequency broadband sound absorption and could have potential applications in controlling vibration and noise.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卷卷发布了新的文献求助10
刚刚
刚刚
刚刚
随机昵称发布了新的文献求助10
刚刚
汤飞柏发布了新的文献求助10
1秒前
活力靖琪发布了新的文献求助10
1秒前
1秒前
李健的小迷弟应助Aries采纳,获得30
2秒前
2秒前
上官若男应助INGH采纳,获得10
2秒前
mr发布了新的文献求助10
2秒前
Lucas应助求知小生采纳,获得10
3秒前
3秒前
3秒前
haha完成签到,获得积分10
3秒前
3秒前
3秒前
wsqg123发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
外向樱完成签到,获得积分10
4秒前
5秒前
5秒前
汉堡包应助悦耳的海燕采纳,获得10
5秒前
lutos发布了新的文献求助10
5秒前
5秒前
5秒前
梁燕完成签到,获得积分10
6秒前
mr完成签到,获得积分20
6秒前
6秒前
hhhh_xt发布了新的文献求助30
6秒前
6秒前
7秒前
7秒前
7秒前
Stella应助Yuanfang123采纳,获得10
7秒前
7秒前
8秒前
8秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588119
求助须知:如何正确求助?哪些是违规求助? 4671184
关于积分的说明 14786238
捐赠科研通 4624496
什么是DOI,文献DOI怎么找? 2531592
邀请新用户注册赠送积分活动 1500217
关于科研通互助平台的介绍 1468240