已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Rapid fingerprinting of spilled petroleum products using fluorescence spectroscopy coupled with parallel factor and principal component analysis

沥青质 石油 石油产品 主成分分析 化学 环境化学 环境科学 质谱法 色谱法 计算机科学 有机化学 人工智能
作者
Fatemeh S. Mirnaghi,Nicholas Soucy,Bruce P. Hollebone,Carl E. Brown
出处
期刊:Chemosphere [Elsevier]
卷期号:208: 185-195 被引量:35
标识
DOI:10.1016/j.chemosphere.2018.05.111
摘要

The characterization of spilled petroleum products in an oil spill is necessary for identifying the spill source, selection of clean-up strategies, and evaluating potential environmental and ecological impacts. Existing standard methods for the chemical characterization of spilled oils are time-consuming due to the lengthy sample preparation for analysis. The main objective of this study is the development of a rapid screening method for the fingerprinting of spilled petroleum products using excitation/emission matrix (EEM) fluorescence spectroscopy, thereby delivering a preliminary evaluation of the petroleum products within hours after a spill. In addition, the developed model can be used for monitoring the changes of aromatic compositions of known spilled oils over time. This study involves establishing a fingerprinting model based on the composition of polycyclic and heterocyclic aromatic hydrocarbons (PAH and HAHs, respectively) of 130 petroleum products at different states of evaporative weathering. The screening model was developed using parallel factor analysis (PARAFAC) of a large EEM dataset. The significant fluorescing components for each sample class were determined. After which, through principal component analysis (PCA), the variation of scores of their modeled factors was discriminated based on the different classes of petroleum products. This model was then validated using gas chromatography-mass spectrometry (GC-MS) analysis. The rapid fingerprinting and the identification of unknown and new spilled oils occurs through matching the spilled product with the products of the developed model. Finally, it was shown that HAH compounds in asphaltene and resins contribute to ≥4-ring PAHs compounds in petroleum products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研友_诺发布了新的文献求助30
2秒前
fox2shj完成签到,获得积分10
3秒前
4秒前
搜集达人应助白华苍松采纳,获得10
4秒前
4秒前
蹦蹦发布了新的文献求助10
5秒前
小唐发布了新的文献求助10
6秒前
6秒前
科研通AI5应助研友_诺采纳,获得10
7秒前
liu完成签到,获得积分10
7秒前
脑洞疼应助欣喜的友易采纳,获得10
8秒前
8秒前
优秀的荔枝完成签到 ,获得积分10
9秒前
无奈苡发布了新的文献求助10
10秒前
老迟到的书雁完成签到 ,获得积分10
12秒前
12秒前
畅快问蕊发布了新的文献求助10
12秒前
yyxx发布了新的文献求助10
12秒前
研友_诺完成签到,获得积分10
13秒前
Davin_ji完成签到 ,获得积分10
13秒前
13秒前
14秒前
16秒前
17秒前
SYLH应助Tinsulfides采纳,获得10
17秒前
17秒前
venger完成签到,获得积分10
17秒前
郭娅楠完成签到 ,获得积分10
17秒前
林致倓完成签到,获得积分10
18秒前
火星上的闭月完成签到 ,获得积分10
18秒前
Hello应助我忘记带刀了采纳,获得10
20秒前
英姑应助rachel-yue采纳,获得10
20秒前
段大开发布了新的文献求助10
20秒前
21秒前
xxx完成签到,获得积分10
21秒前
我是老大应助兴奋硬币采纳,获得30
22秒前
好久不见发布了新的文献求助10
22秒前
chem斌发布了新的文献求助10
23秒前
chloe关注了科研通微信公众号
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555423
求助须知:如何正确求助?哪些是违规求助? 3131069
关于积分的说明 9389939
捐赠科研通 2830532
什么是DOI,文献DOI怎么找? 1556087
邀请新用户注册赠送积分活动 726445
科研通“疑难数据库(出版商)”最低求助积分说明 715750