Deep learning for predicting disease status using genomic data

维数之咒 疾病 深度学习 人工智能 降维 自编码 过程(计算) 计算机科学 大数据 数据科学 计算生物学 机器学习 数据挖掘 操作系统
作者
Qianfan Wu,Adel Boueiz,Alican Bozkurt,Aria Masoomi,Allan Wang,Dawn L. DeMeo,Scott T. Weiss,Weiliang Qiu
标识
DOI:10.7287/peerj.preprints.27123v1
摘要

Predicting disease status for a complex human disease using genomic data is an important, yet challenging, step in personalized medicine. Among many challenges, the so-called curse of dimensionality problem results in unsatisfied performances of many state-of-art machine learning algorithms. A major recent advance in machine learning is the rapid development of deep learning algorithms that can efficiently extract meaningful features from high-dimensional and complex datasets through a stacked and hierarchical learning process. Deep learning has shown breakthrough performance in several areas including image recognition, natural language processing, and speech recognition. However, the performance of deep learning in predicting disease status using genomic datasets is still not well studied. In this article, we performed a review on the four relevant articles that we found through our thorough literature review. All four articles used auto-encoders to project high-dimensional genomic data to a low dimensional space and then applied the state-of-the-art machine learning algorithms to predict disease status based on the low-dimensional representations. This deep learning approach outperformed existing prediction approaches, such as prediction based on probe-wise screening and prediction based on principal component analysis. The limitations of the current deep learning approach and possible improvements were also discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风清扬应助shuaige采纳,获得10
刚刚
123发布了新的文献求助10
1秒前
wdccx完成签到,获得积分10
1秒前
方向发布了新的文献求助10
2秒前
2秒前
mjf111完成签到,获得积分10
3秒前
5秒前
5秒前
6秒前
6秒前
6秒前
斯文败类应助jewel9采纳,获得10
6秒前
shuaige给shuaige的求助进行了留言
7秒前
学习是头等大事完成签到,获得积分10
8秒前
wjx发布了新的文献求助10
8秒前
一团发布了新的文献求助10
9秒前
afar完成签到 ,获得积分10
10秒前
拼搏惜金完成签到,获得积分10
10秒前
淡定念波发布了新的文献求助10
11秒前
穆青发布了新的文献求助10
11秒前
12秒前
12秒前
华仔应助查理采纳,获得10
12秒前
千跃举报ikun求助涉嫌违规
13秒前
13秒前
luckin9完成签到,获得积分10
14秒前
慕青应助筑城院采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
瓜皮糖浆完成签到,获得积分10
17秒前
学医的小胖子完成签到 ,获得积分10
18秒前
彭于晏应助酷炫的归尘采纳,获得10
19秒前
JamesPei应助dd采纳,获得10
19秒前
沉默的半凡完成签到,获得积分10
19秒前
凡迪亚比发布了新的文献求助10
21秒前
善学以致用应助坤123采纳,获得10
22秒前
23秒前
112233发布了新的文献求助10
23秒前
自然的南露完成签到 ,获得积分10
24秒前
淡定念波完成签到,获得积分20
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956068
求助须知:如何正确求助?哪些是违规求助? 3502276
关于积分的说明 11107024
捐赠科研通 3232788
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870389
科研通“疑难数据库(出版商)”最低求助积分说明 802011