Simulation-driven design to reduce pull-in voltage of donut HASEL actuators

多物理 电介质 介电弹性体 执行机构 人工肌肉 软机器人 电活性聚合物 机械工程 弹性体 电压 高压 有限元法 电气故障 材料科学 计算机科学 电气工程 光电子学 工程类 复合材料 结构工程
作者
Shardul S. Panwar,Umesh Gandhi,Eric Acome,Christoph Keplinger,Michael Rowe
标识
DOI:10.1117/12.2515388
摘要

Soft robotics research has been motivated in part by the versatility and functionality of human muscle. Researchers have tried to mimic the speed and performance of human muscle by using soft fluid actuators; however, these actuators are often slow and bulky. Research conducted in the use of dielectric elastomers has proven to be promising. These dielectric elastomers can produce large strains using high voltage electrical input. However, the development of these dielectric elastomer actuators has been inhibited due to their susceptibility to dielectric breakdown and electrical aging. One recent technology that can solve these issues and advance the field of soft actuators, is that of the hydraulically amplified self-healing electrostatic (HASEL) actuator. Such actuators are comprised of a liquid dielectric enclosed in an elastomer shell with electrodes on either side of the shell. Incorporating a liquid dielectric dramatically reduces the impact of dielectric breakdown on the performance of HASEL actuators and allows for hydraulically-coupled modes of actuation. However, the voltages that are required to operate these actuators are still challenging for commercial applications. Our work uses a simulation-driven approach to determine design parameters for donut HASEL actuators that provide a high actuation strain at a reduced pull-in voltage. We outline a modeling approach that is comprised of calibrating the properties of a multiphysics finite element model using actual HASEL actuator experimental data. The model is validated using a donut-shape HASEL actuator from literature. The model is then applied to determine the optimal electrode size and fluid dielectric permittivity for achieving a low operating voltage. This simulation-driven design assists in the fabrication of soft actuators with potential application to a variety of industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123456789完成签到,获得积分10
2秒前
炙热的如柏完成签到,获得积分20
2秒前
3秒前
4秒前
HWei完成签到,获得积分10
4秒前
Ryan完成签到,获得积分10
4秒前
5秒前
Jzhang应助丙队长采纳,获得10
7秒前
8秒前
GXY发布了新的文献求助30
9秒前
Lucas应助专注秋尽采纳,获得10
9秒前
9秒前
754完成签到,获得积分10
9秒前
12秒前
学习猴发布了新的文献求助10
12秒前
充电宝应助炙热的如柏采纳,获得10
13秒前
所所应助qzaima采纳,获得10
13秒前
米兰达完成签到 ,获得积分0
14秒前
xg发布了新的文献求助10
16秒前
Loooong应助Ni采纳,获得10
17秒前
17秒前
WZ0904发布了新的文献求助10
17秒前
顾矜应助博ge采纳,获得10
19秒前
19秒前
Lotus发布了新的文献求助10
20秒前
21秒前
仁爱仙人掌完成签到,获得积分10
23秒前
ywang发布了新的文献求助10
23秒前
25秒前
25秒前
25秒前
ewqw关注了科研通微信公众号
26秒前
曦小蕊完成签到 ,获得积分10
26秒前
27秒前
28秒前
28秒前
奋斗灵波发布了新的文献求助10
28秒前
药学牛马发布了新的文献求助10
28秒前
28秒前
科研通AI5应助WZ0904采纳,获得10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824