美金刚
乙酰胆碱酯酶
兴奋毒性
谷氨酸受体
药理学
医学
阿切
背景(考古学)
神经保护
化学
NMDA受体
受体
神经科学
心理学
生物化学
生物
酶
古生物学
作者
Martina Kaniaková,Eugenie Nepovimová,Lenka Kletečková,Kristýna Skřenková,Kristína Holubová,Žofia Chrienová,Vendula Hepnarová,Tomáš Kučera,Tereza Kobrlová,Karel Valeš,Jan Korábečný,Ondřej Soukup,Martin Hořák
标识
DOI:10.2174/1567205016666190228122218
摘要
Background: Alzheimer’s disease (AD) is the most common form of dementia in the elderly. It is characterized as a multi-factorial disorder with a prevalent genetic component. Due to the unknown etiology, current treatment based on acetylcholinesterase (AChE) inhibitors and N–methyl-D-aspartate receptors (NMDAR) antagonist is effective only temporary. It seems that curative treatment will necessarily be complex due to the multifactorial nature of the disease. In this context, the so-called “multi-targeting" approach has been established. Objectives: The aim of this study was to develop a multi-target-directed ligand (MTDL) combining the support for the cholinergic system by inhibition of AChE and at the same time ameliorating the burden caused by glutamate excitotoxicity mediated by the NMDAR receptors. Methods: We have applied common approaches of organic chemistry to prepare a hybrid of 6-chlorotacrine and memantine. Then, we investigated its blocking ability towards AChE and NMDRS in vitro, as well as its neuroprotective efficacy in vivo in the model of NMDA-induced lessions. We also studied cytotoxic potential of the compound and predicted the ability to cross the blood-brain barrier. Results: novel molecule formed by combination of 6-chlorotacrine and memantine proved to be a promising multipotent hybrid capable of blocking the action of AChE as well as NMDARs. The presented hybrid surpassed the AChE inhibitory activity of the parent compound 6-Cl-THA twofold. According to results it has been revealed that our novel hybrid blocks NMDARs in the same manner as memantine, potently inhibits AChE and is predicted to cross the blood-brain barrier via passive diffusion. Finally, the MTDL design strategy was indicated by in vivo results which showed that the novel 6-Cl-THA-memantine hybrid displayed a quantitatively better neuroprotective effect than the parent compound memantine. Conclusion: We conclude that the combination of two pharmacophores with a synergistic mechanism of action into a single molecule offers great potential for the treatment of CNS disorders associated with cognitive decline and/or excitotoxicity mediated by NMDARs.
科研通智能强力驱动
Strongly Powered by AbleSci AI