L-Seg: An end-to-end unified framework for multi-lesion segmentation of fundus images

计算机科学 分割 人工智能 眼底(子宫) 模式识别(心理学) 糖尿病性视网膜病变 深度学习 相似性(几何) 图像(数学) 医学 眼科 内分泌学 糖尿病
作者
Song Guo,Tao Li,Hong Kang,Ning Li,Yujun Zhang,Kai Wang
出处
期刊:Neurocomputing [Elsevier]
卷期号:349: 52-63 被引量:103
标识
DOI:10.1016/j.neucom.2019.04.019
摘要

Diabetic retinopathy and diabetic macular edema are the two leading causes for blindness in working-age people, and the quantitative and qualitative diagnosis of these two diseases usually depends on the presence and areas of lesions in fundus images. The main related lesions include soft exudates, hard exudates, microaneurysms, and haemorrhages. However, segmentation of these four kinds of lesions is difficult due to their uncertainty in size, contrast, and high interclass similarity. Therefore, we aim to design a multi-lesion segmentation model. We have designed the first small object segmentation network (L-Seg) that can segment the four kinds of lesions simultaneously. Taking into account that small lesion regions could not response at high level of network, we propose a multi-scale feature fusion method to handle this problem. In addition, when considering the cases of both class-imbalance and loss-imbalance problems, we propose a multi-channel bin loss. We have evaluated L-Seg on three fundus datasets including two publicly available datasets - IDRiD and e-ophtha and one private dataset - DDR. Extensive experiments have demonstrated that L-Seg achieves better performance in small lesion segmentation than other deep learning models and traditional methods. Specially, the mAUC score of L-Seg is over 16.8%, 1.51% and 3.11% higher than that of DeepLab v3+ on IDRiD, e-ophtha and DDR datasets, respectively. Moreover, our framework shows competitive performance compared with top-3 teams in IDRiD challenge. The source code of L-Seg is available at: https://github.com/guomugong/L-Seg.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shine_zz发布了新的文献求助10
2秒前
3秒前
4秒前
芦同学完成签到,获得积分10
5秒前
llq发布了新的文献求助10
6秒前
午午午午完成签到 ,获得积分10
8秒前
yvonne3399发布了新的文献求助50
9秒前
英姑应助英勇代荷采纳,获得10
9秒前
雷霆万钧完成签到 ,获得积分10
10秒前
11秒前
李小山发布了新的文献求助10
16秒前
17秒前
ccc发布了新的文献求助10
18秒前
19秒前
19秒前
20秒前
Orange应助dablack采纳,获得10
20秒前
20秒前
21秒前
21秒前
22秒前
24秒前
满意之玉发布了新的文献求助10
24秒前
包容芯完成签到 ,获得积分10
25秒前
雷霆万钧发布了新的文献求助10
25秒前
26秒前
汉堡包应助杨xy采纳,获得10
27秒前
27秒前
29秒前
NexusExplorer应助Amazing采纳,获得10
31秒前
陈迹发布了新的文献求助10
32秒前
啦啦啦完成签到,获得积分10
32秒前
rosalieshi应助123456hhh采纳,获得30
34秒前
尊敬的半梅完成签到 ,获得积分10
34秒前
34秒前
星辰大海应助科研通管家采纳,获得10
35秒前
桐桐应助科研通管家采纳,获得10
35秒前
香蕉觅云应助科研通管家采纳,获得10
35秒前
SUN应助科研通管家采纳,获得10
35秒前
35秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309624
求助须知:如何正确求助?哪些是违规求助? 2942923
关于积分的说明 8511679
捐赠科研通 2618018
什么是DOI,文献DOI怎么找? 1430760
科研通“疑难数据库(出版商)”最低求助积分说明 664249
邀请新用户注册赠送积分活动 649437