L-Seg: An end-to-end unified framework for multi-lesion segmentation of fundus images

计算机科学 分割 人工智能 眼底(子宫) 模式识别(心理学) 糖尿病性视网膜病变 深度学习 相似性(几何) 图像(数学) 医学 眼科 内分泌学 糖尿病
作者
Song Guo,Tao Li,Hong Kang,Ning Li,Yujun Zhang,Kai Wang
出处
期刊:Neurocomputing [Elsevier]
卷期号:349: 52-63 被引量:134
标识
DOI:10.1016/j.neucom.2019.04.019
摘要

Diabetic retinopathy and diabetic macular edema are the two leading causes for blindness in working-age people, and the quantitative and qualitative diagnosis of these two diseases usually depends on the presence and areas of lesions in fundus images. The main related lesions include soft exudates, hard exudates, microaneurysms, and haemorrhages. However, segmentation of these four kinds of lesions is difficult due to their uncertainty in size, contrast, and high interclass similarity. Therefore, we aim to design a multi-lesion segmentation model. We have designed the first small object segmentation network (L-Seg) that can segment the four kinds of lesions simultaneously. Taking into account that small lesion regions could not response at high level of network, we propose a multi-scale feature fusion method to handle this problem. In addition, when considering the cases of both class-imbalance and loss-imbalance problems, we propose a multi-channel bin loss. We have evaluated L-Seg on three fundus datasets including two publicly available datasets - IDRiD and e-ophtha and one private dataset - DDR. Extensive experiments have demonstrated that L-Seg achieves better performance in small lesion segmentation than other deep learning models and traditional methods. Specially, the mAUC score of L-Seg is over 16.8%, 1.51% and 3.11% higher than that of DeepLab v3+ on IDRiD, e-ophtha and DDR datasets, respectively. Moreover, our framework shows competitive performance compared with top-3 teams in IDRiD challenge. The source code of L-Seg is available at: https://github.com/guomugong/L-Seg.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xh发布了新的文献求助10
刚刚
xh发布了新的文献求助10
刚刚
xh发布了新的文献求助10
刚刚
刚刚
1秒前
柚子发布了新的文献求助10
1秒前
科研通AI6应助面包战士采纳,获得10
1秒前
小灰灰完成签到,获得积分10
2秒前
Sg完成签到,获得积分10
3秒前
丽娜完成签到,获得积分10
3秒前
Lucas应助从容飞凤采纳,获得10
4秒前
cpxliteratur完成签到,获得积分10
4秒前
专注的问寒举报谢琳求助涉嫌违规
5秒前
今后应助梓歆采纳,获得10
5秒前
ddd完成签到,获得积分10
6秒前
李健应助葡萄小伊ovo采纳,获得10
6秒前
依灵完成签到,获得积分10
6秒前
7秒前
谨慎的雍发布了新的文献求助10
9秒前
JZzzY发布了新的文献求助10
9秒前
9秒前
小二郎应助孤独的冬易采纳,获得10
10秒前
科研通AI6应助面包战士采纳,获得10
11秒前
科研通AI6应助虚幻的珩采纳,获得10
13秒前
无私砖头完成签到,获得积分10
14秒前
14秒前
思思发布了新的文献求助10
14秒前
小小精神应助勤劳不弱采纳,获得30
15秒前
冷静的无血完成签到,获得积分10
17秒前
彭于晏应助liquor采纳,获得10
17秒前
谨慎的雍完成签到,获得积分10
18秒前
Nniu完成签到,获得积分10
18秒前
huhdcid完成签到,获得积分10
18秒前
77完成签到 ,获得积分10
19秒前
20秒前
li完成签到,获得积分20
21秒前
量子星尘发布了新的文献求助10
21秒前
2R完成签到,获得积分10
21秒前
22秒前
慕青应助科研领军人物采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613393
求助须知:如何正确求助?哪些是违规求助? 4698608
关于积分的说明 14898233
捐赠科研通 4736102
什么是DOI,文献DOI怎么找? 2547006
邀请新用户注册赠送积分活动 1510998
关于科研通互助平台的介绍 1473546