亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

APC/C Ubiquitin Ligase: Coupling Cellular Differentiation to G1/G0 Phase in Multicellular Systems

生物 细胞生物学 泛素连接酶 细胞周期 细胞分化 多细胞生物 细胞分裂控制蛋白4 细胞生长 背景(考古学) 细胞 细胞命运测定 泛素 遗传学 转录因子 基因 古生物学
作者
Yuu Kimata
出处
期刊:Trends in Cell Biology [Elsevier BV]
卷期号:29 (7): 591-603 被引量:36
标识
DOI:10.1016/j.tcb.2019.03.001
摘要

The cell cycle regulator APC/C regulates cell differentiation through cell cycle-independent functions in multicellular organisms. APC/C regulates a range of differentiation processes, from cell fate specification in unspecified progenitor cells to terminal differentiation of specific cell types, via ubiquitin-dependent proteolysis. APC/C influences cell differentiation by exerting at least three types of context-dependent mechanism: (i) regulating the expression levels of cell type-specific transcriptional regulators; (ii) modulating cellular responses to signalling pathways; and (iii) regulating the organisation and functions of centrosomes. APC/C is able to spatiotemporally coordinate these context-dependent differentiation processes with G1/G0 progression in the same cell. The anaphase-promoting complex/cyclosome (APC/C) is an evolutionarily conserved ubiquitin ligase that controls cell cycle progression through spatiotemporally regulated proteolysis. Although recent studies revealed its postmitotic function, our knowledge of the role of APC/C beyond cell cycle regulation in the biology of multicellular organisms is far from complete. Here, I review recent advances in the function of APC/C in animal development, specifically focusing on its emerging role in regulating cell differentiation. I describe how APC/C regulates distinct processes during the course of differentiation by deploying diverse molecular machineries in a variety of developmental contexts. Also, I discuss the significance and clinical relevance of the unique capacity of APC/C and other cell cycle regulators to couple distinct cellular processes with cell proliferation control. The anaphase-promoting complex/cyclosome (APC/C) is an evolutionarily conserved ubiquitin ligase that controls cell cycle progression through spatiotemporally regulated proteolysis. Although recent studies revealed its postmitotic function, our knowledge of the role of APC/C beyond cell cycle regulation in the biology of multicellular organisms is far from complete. Here, I review recent advances in the function of APC/C in animal development, specifically focusing on its emerging role in regulating cell differentiation. I describe how APC/C regulates distinct processes during the course of differentiation by deploying diverse molecular machineries in a variety of developmental contexts. Also, I discuss the significance and clinical relevance of the unique capacity of APC/C and other cell cycle regulators to couple distinct cellular processes with cell proliferation control. ubiquitin ligases are enzymes that catalyse the transfer of ubiquitin molecules onto their substrate proteins. CRLs are a family of multisubunit ubiquitin ligases containing a Cullin-like protein and a RING finger protein as their catalytic centres, which include APC/C, SCF (Skp1-Cullin1-Fbox), VBC (pVHL-Elongin B/C-Cullin2), Cullin3-BTB, and Cullin4 complexes. a family of kinases forming a complex with a regulatory subunit, cyclin, including CDK1-cyclin A/B, CDK2-cyclin A/E, and CDK4/6-cyclin D complexes. Typically, the cellular levels of cyclins oscillate during the cell cycle, reflecting the enzymatic activities of their associated kinases. a medical condition characterised by a reduced brain size, which may be present at birth due to abnormal brain development or can develop after birth due to defective brain growth. coordinated orientation of cells or cellular structures within the plane of an epithelial tissue. Prime examples are the epithelia of the Drosophila eyes and wings, where photoreceptor cell clusters and wing hairs are oriented in certain directions across the tissues, and which have been used as major model systems to study the mechanism regulating PCP. the hypothetical time point in G1 phase where mammalian cells are considered to commit to the next round of the cell cycle. The cell that has passed the R-point will initiate DNA replication without a delay regardless of whether critical amino acids or serums are withdrawn. Currently, the stable activation of the transcriptional activity of E2F is considered the defining event of R-point. the transcriptional repressor important for the regulation of the G1 to S phase transition as well as the exit from G0 phase. pRb directly binds E2F transcription factor to inhibit its transactivation activity. Upon phosphorylation by CDK4-cyclin D, pRb releases E2F, which in turn induces transcription of various cell cycle regulator genes, including cyclin E, to initiate DNA replication. highly regulated molecular cascade that mediates targeted protein degradation in an ATP-dependent manner. In the UPP, three types of enzyme [ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes (E2s), and ubiquitin ligases (E3s)] cooperate to covalently link polyubiquitin chains to lysine residues of target proteins. The polyubiquitinated proteins are then recognised by 26S proteasome, a large complex comprising proteases and ATPase and non-ATPase subunits, and are degraded into small peptides. The highest level of regulation and specificity is conferred by E3s, which directly bind both substrates and E2s in specific spatiotemporal windows and catalyse ubiquitin transfer, and deubiquitinating enzymes (DUBs), a large group of proteases that cleave and modify ubiquitin chains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助一这那西采纳,获得50
38秒前
整齐白秋完成签到 ,获得积分10
45秒前
snowskating完成签到,获得积分20
49秒前
我亦化身东海去完成签到,获得积分10
1分钟前
Evooolet发布了新的文献求助10
1分钟前
1分钟前
笨笨山芙完成签到 ,获得积分10
3分钟前
ywzwszl完成签到,获得积分0
3分钟前
MGraceLi_sci完成签到,获得积分10
3分钟前
科研通AI5应助星星采纳,获得30
3分钟前
老迟到的友桃完成签到 ,获得积分10
3分钟前
sharronnie完成签到 ,获得积分10
4分钟前
4分钟前
星星发布了新的文献求助30
4分钟前
4分钟前
shanks发布了新的文献求助10
4分钟前
yi完成签到,获得积分10
4分钟前
shanks完成签到,获得积分10
5分钟前
5分钟前
乐乐应助飘着的鬼采纳,获得10
5分钟前
孙国扬发布了新的文献求助10
5分钟前
5分钟前
酷波er应助孙国扬采纳,获得10
5分钟前
飘着的鬼发布了新的文献求助10
5分钟前
星星完成签到,获得积分20
5分钟前
魔法师完成签到,获得积分0
5分钟前
科研通AI5应助飘着的鬼采纳,获得30
6分钟前
6分钟前
孙国扬发布了新的文献求助10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
JamesPei应助孙国扬采纳,获得10
6分钟前
潘云逸发布了新的文献求助10
7分钟前
潘云逸完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
孙国扬发布了新的文献求助10
7分钟前
金钰贝儿完成签到,获得积分10
7分钟前
zmx完成签到 ,获得积分10
7分钟前
Owen应助孙国扬采纳,获得10
7分钟前
精明凡双完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926763
求助须知:如何正确求助?哪些是违规求助? 4196356
关于积分的说明 13032482
捐赠科研通 3968676
什么是DOI,文献DOI怎么找? 2175096
邀请新用户注册赠送积分活动 1192250
关于科研通互助平台的介绍 1102649