Optimal covariance matrix estimation for high-dimensional noise in high-frequency data

极小极大 协方差 协方差矩阵 收敛速度 极大极小估计 数学 算法 维数之咒 估计员 计算机科学 数学优化 统计 最小方差无偏估计量 计算机网络 频道(广播)
作者
Jinyuan Chang,Hu Qiao,Cheng Liu,Cheng Yong Tang
出处
期刊:Journal of Econometrics [Elsevier BV]
卷期号:239 (2): 105329-105329 被引量:8
标识
DOI:10.1016/j.jeconom.2022.06.010
摘要

We consider high-dimensional measurement errors with high-frequency data. Our focus is on recovering the covariance matrix of the random errors with optimality. In this problem, not all components of the random vector are observed at the same time and the measurement errors are latent variables, leading to major challenges besides high data dimensionality. We propose a new covariance matrix estimator in this context with appropriate localization and thresholding. By developing a new technical device integrating the high-frequency data feature with the conventional notion of $\alpha$-mixing, our analysis successfully accommodates the challenging serial dependence in the measurement errors. Our theoretical analysis establishes the minimax optimal convergence rates associated with two commonly used loss functions. We then establish cases when the proposed localized estimator with thresholding achieves the minimax optimal convergence rates. Considering that the variances and covariances can be small in reality, we conduct a second-order theoretical analysis that further disentangles the dominating bias in the estimator. A bias-corrected estimator is then proposed to ensure its practical finite sample performance. We illustrate the promising empirical performance of the proposed estimator with extensive simulation studies and a real data analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wxin完成签到,获得积分10
1秒前
CipherSage应助可靠觅珍采纳,获得10
1秒前
奋斗映寒发布了新的文献求助10
1秒前
1秒前
1秒前
领导范儿应助idannn采纳,获得10
2秒前
2秒前
Platinum完成签到,获得积分10
4秒前
司马白晴完成签到,获得积分20
4秒前
4秒前
甜茶发布了新的文献求助10
4秒前
复杂的凝冬完成签到,获得积分10
4秒前
勤奋天真发布了新的文献求助10
4秒前
huxi发布了新的文献求助10
4秒前
XXaaxxxx发布了新的文献求助10
5秒前
5秒前
5秒前
ruguo完成签到,获得积分10
5秒前
愉快的戎发布了新的文献求助10
5秒前
Silone发布了新的文献求助10
5秒前
小虎同学完成签到,获得积分10
6秒前
zjy完成签到 ,获得积分10
6秒前
宣以晴完成签到,获得积分10
7秒前
scifff完成签到,获得积分10
7秒前
wanci应助出其东门采纳,获得10
7秒前
络桵发布了新的文献求助10
7秒前
大鸭梨发布了新的文献求助10
8秒前
阮人雄完成签到,获得积分10
9秒前
CodeCraft应助淡然安雁采纳,获得30
9秒前
WEI完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
传奇3应助称心紫易采纳,获得10
10秒前
ardejiang发布了新的文献求助10
11秒前
zjb完成签到,获得积分20
11秒前
fanghongjian完成签到,获得积分10
11秒前
阮人雄发布了新的文献求助10
11秒前
爱的魔力转圈圈完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559942
求助须知:如何正确求助?哪些是违规求助? 3986277
关于积分的说明 12342143
捐赠科研通 3656944
什么是DOI,文献DOI怎么找? 2014643
邀请新用户注册赠送积分活动 1049418
科研通“疑难数据库(出版商)”最低求助积分说明 937738