衰老
生物
基因敲除
细胞生物学
肉碱
线粒体
细胞培养
生物化学
遗传学
作者
Lihuan Guan,Yixin Chen,Yongtao Wang,Huizhen Zhang,Shicheng Fan,Yue Gao,Tingying Jiao,Kaili Fu,Jiahong Sun,Ai‐Ming Yu,Min Huang,Huichang Bi
摘要
The carnitine palmitoyltransferase (CPT) family is essential for fatty acid oxidation. Recently, we found that CPT1C, one of the CPT1 isoforms, plays a vital role in cancer cellular senescence. However, it is unclear whether other isoforms (CPT1A, CPT1B, and CPT2) have the same effect on cellular senescence. This study illustrates the different effects of CPT knockdown on PANC‐1 cell proliferation and senescence and MDA‐MB‐231 cell proliferation and senescence, as demonstrated by cell cycle kinetics, Bromodeoxyuridine incorporation, senescence‐associated β‐galactosidase activity, colony formation, and messenger RNA (mRNA) expression of key senescence‐associated secretory phenotype factors. CPT1C exhibits the most substantial effect on cell senescence. Lipidomics analysis was performed to further reveal that the knockdown of CPTs changed the contents of lipids involved in mitochondrial function, and lipid accumulation was induced. Moreover, the different effects of the isoform deficiencies on mitochondrial function were measured and compared by the level of radical oxygen species, mitochondrial transmembrane potential, and the respiratory capacity, and the expression of the genes involved in mitochondrial function were determined at the mRNA level. In summary, CPT1C exerts the most significant effect on mitochondrial dysfunction‐associated tumor cellular senescence among the members of the CPT family, which further supports the crucial role of CPT1C in cellular senescence and suggests that inhibition of CPT1C may represent as a new strategy for cancer treatment through the induction of tumor senescence.
科研通智能强力驱动
Strongly Powered by AbleSci AI