亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The neural dynamics of familiar face recognition

心理学 认知心理学 面部识别系统 身份(音乐) 面子(社会学概念) 刺激(心理学) 面部知觉 观点 脑电图 沟通 模式识别(心理学) 感知 神经科学 艺术 社会科学 物理 社会学 声学 视觉艺术
作者
Géza Gergely Ambrus,Daniel Kaiser,Radoslaw Martin Cichy,Gyula Kovács
标识
DOI:10.1101/393652
摘要

Abstract In real-life situations, the appearance of a person’s face can vary substantially across different encounters, making face recognition a challenging task for the visual system. Recent fMRI decoding studies have suggested that face recognition is supported by identity representations located in regions of the occipito-temporal cortex. Here, we used EEG to elucidate the temporal emergence of these representations. Human participants (both sexes) viewed a set of highly variable face images of four highly familiar celebrities (two male, two female), while performing an orthogonal task. Univariate analyses of event-related EEG responses revealed a pronounced differentiation between male and female faces, but not between identities of the same sex. Using multivariate representational similarity analysis, we observed a gradual emergence of face identity representations, with an increasing degree of invariance. Face identity information emerged rapidly, starting shortly after 100ms from stimulus onset. From 400ms after onset and predominantly in the right hemisphere, identity representations showed two invariance properties: (1) they equally discriminated identities of opposite sexes and of the same sex, and (2) they were tolerant to image-based variations. These invariant representations may be a crucial prerequisite for successful face recognition in everyday situations, where the appearance of a familiar person can vary drastically. Significance Statement Recognizing the face of a friend on the street is a task we effortlessly perform in our everyday lives. However, the necessary visual processing underlying familiar face recognition is highly complex. As the appearance of a given person varies drastically between encounters, for example across viewpoints or emotional expressions, the brain needs to extract identity information that is invariant to such changes. Using multivariate analyses of EEG data, we characterize how invariant representations of face identity emerge gradually over time. After 400ms of processing, cortical representations reliably differentiated two similar identities (e.g., two famous male actors), even across a set of highly variable images. These representations may support face recognition under challenging real-life conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SS完成签到,获得积分0
4秒前
ly完成签到,获得积分10
6秒前
呆萌小鸭子完成签到 ,获得积分10
10秒前
11秒前
酷波er应助务实澜采纳,获得10
14秒前
Dreamy完成签到,获得积分10
18秒前
Dreamy发布了新的文献求助10
26秒前
学不完了完成签到 ,获得积分10
27秒前
缪尔岚完成签到,获得积分10
30秒前
33秒前
幸运星完成签到,获得积分10
37秒前
bingbing34发布了新的文献求助10
38秒前
38秒前
赘婿应助南山荣熙采纳,获得10
44秒前
linnett发布了新的文献求助10
51秒前
舒心豪英完成签到 ,获得积分10
53秒前
好巧完成签到,获得积分10
1分钟前
枫于林完成签到 ,获得积分10
1分钟前
失眠梦柏完成签到,获得积分10
1分钟前
1分钟前
无花果应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得30
1分钟前
失眠梦柏发布了新的文献求助10
1分钟前
科研通AI2S应助zhxq采纳,获得10
1分钟前
1分钟前
king完成签到,获得积分10
1分钟前
skinny发布了新的文献求助10
1分钟前
king发布了新的文献求助10
1分钟前
1分钟前
1分钟前
zxy发布了新的文献求助10
1分钟前
天天快乐应助柏白筠采纳,获得10
1分钟前
储灿发布了新的文献求助10
1分钟前
1分钟前
1分钟前
bingbing34发布了新的文献求助10
1分钟前
2分钟前
骊山脚下云歌飞完成签到,获得积分10
2分钟前
柏白筠发布了新的文献求助10
2分钟前
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544354
求助须知:如何正确求助?哪些是违规求助? 3121554
关于积分的说明 9347855
捐赠科研通 2819801
什么是DOI,文献DOI怎么找? 1550461
邀请新用户注册赠送积分活动 722526
科研通“疑难数据库(出版商)”最低求助积分说明 713273