Hyperspectral Images Denoising via Nonconvex Regularized Low-Rank and Sparse Matrix Decomposition

高光谱成像 降噪 矩阵分解 模式识别(心理学) 人工智能 稀疏矩阵 图像去噪 计算机科学 稀疏逼近 分解 计算机视觉 数学 图像处理 图像(数学) 物理 高斯分布 特征向量 生物 量子力学 生态学
作者
Ting Xie,Shutao Li,Bin Sun
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 44-56 被引量:79
标识
DOI:10.1109/tip.2019.2926736
摘要

Hyperspectral images (HSIs) are often degraded by a mixture of various types of noise during the imaging process, including Gaussian noise, impulse noise, and stripes. Such complex noise could plague the subsequent HSIs processing. Generally, most HSI denoising methods formulate sparsity optimization problems with convex norm constraints, which over-penalize large entries of vectors, and may result in a biased solution. In this paper, a nonconvex regularized low-rank and sparse matrix decomposition (NonRLRS) method is proposed for HSI denoising, which can simultaneously remove the Gaussian noise, impulse noise, dead lines, and stripes. The NonRLRS aims to decompose the degraded HSI, expressed in a matrix form, into low-rank and sparse components with a robust formulation. To enhance the sparsity in both the intrinsic low-rank structure and the sparse corruptions, a novel nonconvex regularizer named as normalized ε-penalty, is presented, which can adaptively shrink each entry. In addition, an effective algorithm based on the majorization minimization (MM) is developed to solve the resulting nonconvex optimization problem. Specifically, the MM algorithm first substitutes the nonconvex objective function with the surrogate upper-bound in each iteration, and then minimizes the constructed surrogate function, which enables the nonconvex problem to be solved in the framework of reweighted technique. Experimental results on both simulated and real data demonstrate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助Isabel采纳,获得10
刚刚
gezid完成签到 ,获得积分10
刚刚
1秒前
1秒前
niu1发布了新的文献求助10
1秒前
Intro发布了新的文献求助10
1秒前
舒服的冬天完成签到,获得积分10
2秒前
Helical给Helical的求助进行了留言
2秒前
甜蜜晓绿完成签到,获得积分10
2秒前
3秒前
钱多多完成签到,获得积分10
3秒前
baekhyun完成签到,获得积分20
3秒前
3秒前
dpp发布了新的文献求助10
3秒前
今今完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
5秒前
打打应助无情的白桃采纳,获得10
5秒前
香蕉觅云应助与光同晨采纳,获得10
6秒前
6秒前
小蘑菇应助clm采纳,获得10
6秒前
yhnsag完成签到,获得积分10
6秒前
Lin完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
8秒前
Rain发布了新的文献求助10
8秒前
butiflow完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
务实的唇膏完成签到,获得积分10
9秒前
Will完成签到,获得积分10
9秒前
9秒前
Micky完成签到,获得积分10
9秒前
ape发布了新的文献求助10
9秒前
十七发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762