An Aircraft Target Detection Method Based on Regional Convolutional Neural Network for Remote Sensing Images

计算机科学 卷积神经网络 人工智能 目标检测 特征提取 人工神经网络 残余物 对手 钥匙(锁) 无人机 计算机视觉 实时计算 模式识别(心理学) 遗传学 生物 计算机安全 算法
作者
Bing Wang,Yan Zhou,Huainian Zhang,Ning Wang
标识
DOI:10.1109/iceiec.2019.8784637
摘要

The aircraft target is the key object of battlefield surveillance and reconnaissance. It can accurately and efficiently detect the aircraft target from the remote sensing images which aim at ground reconnaissance. First of all, it can quickly acquire the intelligence of the enemy's military activities and provide support for the identification of the air target. Second, it can evaluate the importance of the military airport and analyze enemy's operational intentions, to achieve a precise strike against the enemy's aircraft targets. The existing aircraft detection method uses a single convolutional neural network to accomplish the whole process of feature extraction and recognition. It fails to effectively extract the characteristics of aircraft targets and ignore the scale differences of different aircraft. Thus, the recognition results are not accurate enough. Aiming at this problem, this paper uses the deep residual network to extract the characteristics of aircraft targets, studies and analyzes the size of different aircraft targets, and uses K-means to cluster different sizes. The cluster centers are representative aircraft sizes. Based on these representative sizes of the aircrafts, the Aircraft Targets Region Proposal Network (ATRPN) is proposed to synthesize the geometric characteristics of different aircraft. Based on the faster regional convolutional neural network detection framework (Faster R-CNN), taking the deep residual network and ARPPN as the front end and the candidate box generation network, the ATRPN R-CNN remote sensing image aircraft target detection method is proposed. This paper also establishes an aircraft target detection data set with uniform distribution, complete shape and rich aerial photography angle. After training the ATRPN R-CNN remote sensing image aircraft target detection method on the data set, the performance comparison experiment was carried out with the detection framework of Faster R-CNN and single network target multi-scale detection framework (SSD). The experimental results show that the detection method has higher detection accuracy in many different scenes including different aircraft targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英俊的铭应助sda采纳,获得10
1秒前
意忆完成签到,获得积分10
1秒前
田様应助阿哈采纳,获得10
3秒前
3秒前
端庄大白完成签到 ,获得积分10
3秒前
4秒前
Tao完成签到,获得积分20
5秒前
浅忆完成签到,获得积分10
5秒前
7秒前
AlexanderNEIL发布了新的文献求助10
8秒前
9秒前
10秒前
11秒前
12秒前
笨笨的服饰完成签到,获得积分10
12秒前
13秒前
sda发布了新的文献求助10
13秒前
JamesPei应助稻草人采纳,获得10
13秒前
ZYK完成签到,获得积分10
13秒前
D調发布了新的文献求助10
14秒前
单纯行天发布了新的文献求助10
15秒前
研友_VZG7GZ应助cctv18采纳,获得10
15秒前
SYLH应助JiaqiDijon采纳,获得10
16秒前
17秒前
17秒前
阿哈发布了新的文献求助10
18秒前
18秒前
samvega应助lq采纳,获得30
18秒前
hyl-tcm完成签到 ,获得积分10
18秒前
勤劳的小蜜蜂完成签到,获得积分10
18秒前
呜呜完成签到,获得积分10
18秒前
cctv18给cc的求助进行了留言
19秒前
Lily发布了新的文献求助10
19秒前
科研通AI5应助是咸鱼呀采纳,获得30
20秒前
20秒前
疯狂的青亦完成签到,获得积分10
20秒前
石林关注了科研通微信公众号
20秒前
21秒前
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756285
求助须知:如何正确求助?哪些是违规求助? 3299555
关于积分的说明 10110541
捐赠科研通 3014144
什么是DOI,文献DOI怎么找? 1655386
邀请新用户注册赠送积分活动 789834
科研通“疑难数据库(出版商)”最低求助积分说明 753433