计算机科学
人工智能
卷积神经网络
深度学习
RGB颜色模型
分割
卷积(计算机科学)
航空影像
任务(项目管理)
全球定位系统
特征提取
计算机视觉
萃取(化学)
图像分割
人工神经网络
模式识别(心理学)
图像(数学)
工程类
电信
化学
系统工程
色谱法
作者
Neelanshi Varia,Akanksha Dokania,J. Senthilnath
标识
DOI:10.1109/ssci.2018.8628717
摘要
In this paper, we propose automatic road extraction using Unmanned Aerial Vehicle (UAV) based Remote Sensing data. Road extraction using UAV data is very useful in traffic management, city planning, GPS based applications, etc. Deep learning techniques namely, Fully Convolutional Network (FCN) and conditional Generative Adversarial Networks (GAN) are used to extract roads from a UAV dataset available in the literature. FCN performs semantic segmentation on the image whereas the GAN generates output images from the model it learns. The results demonstrate the efficiency of the deep learning methods for the task of road extraction.
科研通智能强力驱动
Strongly Powered by AbleSci AI