材料科学
拉曼光谱
超级电容器
石墨烯
储能
电极
镍
纳米复合材料
氧化物
化学工程
纳米材料
纳米技术
电容
冶金
物理化学
光学
物理
工程类
功率(物理)
化学
量子力学
作者
Shuge Dai,Zhuangfei Zhang,Junmin Xu,Weixia Shen,Qiaobao Zhang,Xigui Yang,Tingting Xu,Dai Dang,Hao Hu,Bote Zhao,Ye Wang,Chong Qu,Jianwei Fu,Xinjian Li,Chenguo Hu,Meilin Liu
出处
期刊:Nano Energy
[Elsevier]
日期:2019-07-21
卷期号:64: 103919-103919
被引量:125
标识
DOI:10.1016/j.nanoen.2019.103919
摘要
In situ Raman spectroscopy is a powerful technique for probing the structure and phase composition of the electrode materials that are undergoing charge-discharge process. Herein, the charge storage mechanism of as-prepared Ni(HCO3)2 nanomaterial is successfully studied by using the in situ Raman spectroscopy. The charge storage can be attributed to the deep oxidation of Ni2+ into Ni3+, and the irreversible phase transformation of γ-NiOOH into disordered β-Ni(OH)2 damages the crystal structure of Ni(HCO3)2, arousing the capacity loss of the electrode during the long-term cycling process. Under the guidance of the experimental investigations, a porous Ni(HCO3)2/reduced graphene oxide (rGO) nanocomposite is designed and synthesized, exhibiting ultrahigh specific capacity (846 C g−1) and excellent rate capability (618 C g−1 at 20 A g−1). When coupled with an negative electrode based on rGO, the resulting hybrid supercapacitor shows an ultrahigh energy density of 66 Wh kg−1 at power density of 1.9 kW kg−1 and good cycling stability. These findings provide important insight into the mechanism of charge storage, and scientific basis for design of high-performance energy storage materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI