Effects of Cyclic Freeze and Thaw on Engineering Properties of Compacted Loess and Lime-Stabilized Loess

黄土 石灰 阿太堡极限 岩土工程 含水量 水分 土壤水分 材料科学 土壤科学 环境科学 地质学 复合材料 地貌学 冶金
作者
Wuyu Zhang,Anbang Guo,Cheng Lin
出处
期刊:Journal of Materials in Civil Engineering [American Society of Civil Engineers]
卷期号:31 (9) 被引量:27
标识
DOI:10.1061/(asce)mt.1943-5533.0002858
摘要

Loess is a problematic soil, which is often characterized with loose structure and high potential for collapse by water or external loads. In cold regions, the challenge of loess is further compounded by the seasonally frozen weather as the cyclic freeze-thaw action can disrupt the structure of natural loess, resulting in increased compressibility and decreased strength of the loess. A common practice to improve loess properties is to compact loess or chemically stabilize loess using cement, lime, or other binders. Although extensive studies have been conducted on the influence of freeze-and-thaw (F-T) cycles on engineering properties of soils, limited work has been done on freeze-thaw effects on loess and even less work has been concerned about lime-stabilized loess affected by cyclic freeze and thaw. This paper aims to fill such a research gap by performing a comprehensive laboratory study in a closed system to evaluate the impact of cyclic freeze and thaw on engineering properties of compacted loess and lime-stabilized loess, including changes in volume, moisture content, Atterberg limits, stress-strain relationships, modulus, and strength. The test results show that freeze-thaw cycles resulted in increase in soil volume, decrease in moisture content, but negligible change in Atterberg limits. The elastic modulus and peak shear strength of lime-stabilized loess were decreased to the lowest by approximately 15%–25% after three freeze-thaw cycles and the decreasing rate was more significant at a lower confining pressure. However, both the modulus and strength recovered and even exceeded the initial values after 11 F-T cycles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LIUJC完成签到,获得积分10
刚刚
1秒前
Lee发布了新的文献求助10
1秒前
烤冷面应助dsfsd采纳,获得20
1秒前
浮游应助lizh187采纳,获得10
1秒前
iNk应助宋祝福采纳,获得20
1秒前
2秒前
老唐发布了新的文献求助10
2秒前
2秒前
2秒前
领导范儿应助lanshuitai采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
小仙完成签到,获得积分10
3秒前
还单身的雅琴完成签到,获得积分10
3秒前
wbp31发布了新的文献求助10
3秒前
pzqmoon完成签到,获得积分10
3秒前
罗实完成签到 ,获得积分10
4秒前
4秒前
orixero应助sunsuan采纳,获得10
4秒前
scofield完成签到,获得积分20
5秒前
6秒前
科目三应助1332881954采纳,获得30
6秒前
在水一方应助ardejiang采纳,获得10
6秒前
飘逸访蕊发布了新的文献求助10
7秒前
FashionBoy应助旋风0127采纳,获得10
7秒前
面面完成签到,获得积分10
7秒前
7秒前
scofield发布了新的文献求助30
7秒前
Akim应助Lee采纳,获得10
8秒前
浮游应助hhh采纳,获得10
8秒前
暗栀发布了新的文献求助10
8秒前
陈微发布了新的文献求助10
8秒前
2150号发布了新的文献求助10
9秒前
9秒前
10秒前
张诗雨完成签到 ,获得积分10
10秒前
10秒前
thangxtz完成签到,获得积分10
11秒前
李翔发布了新的文献求助10
11秒前
aa完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
Practical Invisalign Mechanics: Crowding 500
Practical Invisalign Mechanics: Deep Bite and Class II Correction 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4954553
求助须知:如何正确求助?哪些是违规求助? 4216890
关于积分的说明 13121171
捐赠科研通 3999023
什么是DOI,文献DOI怎么找? 2188625
邀请新用户注册赠送积分活动 1203758
关于科研通互助平台的介绍 1116092