Orthotropic mechano-sorptive creep behavior of Chinese fir during the moisture adsorption process determined in tensile mode via dynamic mechanical analysis (DMA)

蠕动 材料科学 粘弹性 复合材料 正交异性材料 吸附 收缩率 平衡含水量 相对湿度 肿胀 的 极限抗拉强度 拉伤 应力松弛 含水量 吸附 化学 热力学 有限元法 工程类 内科学 物理 有机化学 岩土工程 医学
作者
Hui Peng,Jiali Jiang,Jianxiong Lu,Jinzhen Cao
出处
期刊:Holzforschung [De Gruyter]
卷期号:73 (3): 229-239 被引量:9
标识
DOI:10.1515/hf-2018-0067
摘要

Abstract The orthotropic viscoelastic creep (VEC) at a constant moisture content (MC) and mechano-sorptive creep (MSC) during the adsorption process were examined for Chinese fir ( Cunninghamia lanceolata ) under tension at 20, 40, 60 and 80% relative humidity (RH) (30°C). Free swelling was performed on matched specimens based on the strain partition assumption to better understand the characteristics of the mechano-sorptive (MS) phenomenon. Expansion, elastic and time-dependent creep behaviors of radial (R) and tangential (T) specimens were affected by the MC to a higher degree than those of the longitudinal (L) specimen. A higher proportion of elastic strain in total strain was found in the L specimen as compared with transverse specimens, regardless of VEC and MSC. The RH level had a greater effect on relaxation behavior in the L specimen for MSC. According to the three tests, expansion mainly dominated the creep strain during adsorption, especially for the L specimen. The MS strain exerted more influence on transverse specimens and had less contribution to the L specimen. Moreover, under all RH isohume (RHI) conditions, the unstable state contributed to MS strain diminishing as MC approached equilibrium moisture content (EMC). A shorter adsorption time to a new equilibrium state was achieved at the expense of intensifying the unstable state of the wood cell wall.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
启航完成签到,获得积分10
刚刚
1秒前
笋蒸鱼完成签到,获得积分10
1秒前
liutaili发布了新的文献求助10
1秒前
1秒前
睡到人间煮饭时完成签到,获得积分10
1秒前
2秒前
清澈水眸完成签到 ,获得积分10
2秒前
圈圈发布了新的文献求助10
2秒前
zhanlonglsj关注了科研通微信公众号
2秒前
缥缈的万天完成签到 ,获得积分10
3秒前
木禾火发布了新的文献求助10
3秒前
3秒前
3秒前
May完成签到,获得积分10
3秒前
爱静静应助忧郁凌波采纳,获得10
4秒前
Maestro_S发布了新的文献求助10
4秒前
乾坤完成签到,获得积分10
4秒前
5秒前
WxChen完成签到,获得积分10
5秒前
椰子发布了新的文献求助10
5秒前
WJ发布了新的文献求助10
6秒前
xhuryts完成签到,获得积分10
6秒前
Ll发布了新的文献求助10
6秒前
徐翩跹完成签到,获得积分10
7秒前
不喝可乐发布了新的文献求助10
7秒前
Dream完成签到,获得积分10
7秒前
科研通AI5应助F冯采纳,获得10
7秒前
感谢大哥的帮助完成签到 ,获得积分10
7秒前
qiongqiong完成签到,获得积分10
7秒前
米娅完成签到,获得积分10
8秒前
8秒前
强健的妙菱完成签到,获得积分10
9秒前
9秒前
小蘑菇应助温柔若采纳,获得10
9秒前
李爱国应助通~采纳,获得10
9秒前
经竺应助小马哥采纳,获得10
9秒前
11秒前
单纯的芷蝶完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740