Computational Prediction of Human Disease- Associated circRNAs Based on Manifold Regularization Learning Framework

计算机科学 人工智能 正规化(语言学) 机器学习
作者
Qiu Xiao,Jiawei Luo,Jianhua Dai
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:23 (6): 2661-2669 被引量:72
标识
DOI:10.1109/jbhi.2019.2891779
摘要

The accumulating evidences regarding circular RNAs (circRNAs) indicate that they play crucial roles in a wide range of biological processes and participate in tumorigenesis and progression. The number of newly discovered circRNAs have increased dramatically in recent years, but the functions of vast majority of circRNAs remain unknown, and little effort has been devoted to discover disease-associated circRNAs on a large scale until now. With the advancement of high-throughput technology, the increasing availability of omics data has provided an unprecedented opportunity for prioritizing candidate circRNAs for diseases by computational models, which will contribute to exploring the pathogenesis of complex diseases at the circRNA level and provide promising applications in disease diagnosis and treatment. Here we propose the assumption that circRNAs with similar functions are normally associated with similar diseases and vice versa, and develop an integrated computational framework called MRLDC to identify disease-associated circRNAs. To our knowledge, little efforts have been developed for uncovering circRNA-disease associations on a large scale. By fully exploiting the experimentally validated associations between diseases and circRNAs, we first compute the Gaussian interaction profile kernel similarity for circRNAs and diseases, and then a heterogeneous circRNA-disease bilayer network is constructed by combining a circRNA similar network, a disease similar network, and known circRNA-disease associations. Subsequently, we develop a weighted low-rank approximation optimization algorithm with dual-manifold regularizations for predicting disease-associated circRNAs. Experimental results indicate that MRLDC can effectively identify disease circRNA candidates with high accuracy. In addition, case studies further demonstrate the ability of our method in discovering potential circRNA-disease associations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助自由草莓采纳,获得10
刚刚
刚刚
司马雨泽完成签到,获得积分10
刚刚
orixero应助颜老大采纳,获得10
1秒前
1秒前
1秒前
mimiflying发布了新的文献求助20
1秒前
贝贝发布了新的文献求助30
1秒前
lvbowen发布了新的文献求助10
2秒前
2秒前
人123456完成签到,获得积分10
2秒前
111完成签到,获得积分10
2秒前
橙子完成签到,获得积分10
2秒前
齐朕完成签到,获得积分10
3秒前
3秒前
科研通AI6应助小语丝采纳,获得10
3秒前
早早完成签到,获得积分20
4秒前
Twonej应助王木木采纳,获得30
4秒前
Jasper应助damang采纳,获得10
4秒前
4秒前
4秒前
Mortimer完成签到,获得积分10
4秒前
5秒前
freebird应助zp4采纳,获得10
5秒前
huiee发布了新的文献求助10
5秒前
5秒前
星奕完成签到 ,获得积分10
5秒前
6秒前
lvbowen完成签到,获得积分10
7秒前
GRJ发布了新的文献求助30
7秒前
搜集达人应助夕荀采纳,获得10
7秒前
gaochanglu发布了新的文献求助10
7秒前
7秒前
所所应助jassin采纳,获得10
7秒前
陈涛完成签到,获得积分10
7秒前
温婉的老五完成签到,获得积分20
8秒前
Wu关注了科研通微信公众号
8秒前
yangqi完成签到,获得积分10
8秒前
ww发布了新的文献求助10
9秒前
echo完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629839
求助须知:如何正确求助?哪些是违规求助? 4720715
关于积分的说明 14970892
捐赠科研通 4787804
什么是DOI,文献DOI怎么找? 2556517
邀请新用户注册赠送积分活动 1517691
关于科研通互助平台的介绍 1478271