Computational Prediction of Human Disease- Associated circRNAs Based on Manifold Regularization Learning Framework

计算机科学 人工智能 正规化(语言学) 机器学习
作者
Qiu Xiao,Jiawei Luo,Jianhua Dai
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:23 (6): 2661-2669 被引量:72
标识
DOI:10.1109/jbhi.2019.2891779
摘要

The accumulating evidences regarding circular RNAs (circRNAs) indicate that they play crucial roles in a wide range of biological processes and participate in tumorigenesis and progression. The number of newly discovered circRNAs have increased dramatically in recent years, but the functions of vast majority of circRNAs remain unknown, and little effort has been devoted to discover disease-associated circRNAs on a large scale until now. With the advancement of high-throughput technology, the increasing availability of omics data has provided an unprecedented opportunity for prioritizing candidate circRNAs for diseases by computational models, which will contribute to exploring the pathogenesis of complex diseases at the circRNA level and provide promising applications in disease diagnosis and treatment. Here we propose the assumption that circRNAs with similar functions are normally associated with similar diseases and vice versa, and develop an integrated computational framework called MRLDC to identify disease-associated circRNAs. To our knowledge, little efforts have been developed for uncovering circRNA-disease associations on a large scale. By fully exploiting the experimentally validated associations between diseases and circRNAs, we first compute the Gaussian interaction profile kernel similarity for circRNAs and diseases, and then a heterogeneous circRNA-disease bilayer network is constructed by combining a circRNA similar network, a disease similar network, and known circRNA-disease associations. Subsequently, we develop a weighted low-rank approximation optimization algorithm with dual-manifold regularizations for predicting disease-associated circRNAs. Experimental results indicate that MRLDC can effectively identify disease circRNA candidates with high accuracy. In addition, case studies further demonstrate the ability of our method in discovering potential circRNA-disease associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
My完成签到,获得积分10
2秒前
孙颖莎粉丝完成签到,获得积分10
2秒前
尼古拉耶维奇完成签到,获得积分10
2秒前
阿卡宁发布了新的文献求助10
3秒前
4秒前
温柔翰完成签到,获得积分10
5秒前
文龙完成签到 ,获得积分10
5秒前
6秒前
Xiaopan完成签到,获得积分10
6秒前
xiaoming发布了新的文献求助200
7秒前
7秒前
QT完成签到,获得积分20
8秒前
朱华彪完成签到,获得积分10
8秒前
活在当下发布了新的文献求助10
8秒前
8秒前
haha发布了新的文献求助10
9秒前
aurora完成签到 ,获得积分10
10秒前
茉莉完成签到,获得积分10
10秒前
123完成签到,获得积分10
12秒前
12秒前
wwewew完成签到,获得积分10
13秒前
saying发布了新的文献求助10
13秒前
123123完成签到,获得积分10
13秒前
隐形曼青应助阿卡宁采纳,获得10
14秒前
负责紊完成签到,获得积分10
14秒前
善良的火发布了新的文献求助10
16秒前
haha完成签到,获得积分10
16秒前
18秒前
sugar完成签到,获得积分10
19秒前
活在当下完成签到,获得积分10
19秒前
21秒前
ssy发布了新的文献求助10
21秒前
小嘉贞完成签到,获得积分10
23秒前
鸡蛋黄完成签到,获得积分10
24秒前
温纲完成签到,获得积分10
25秒前
lalafish完成签到,获得积分10
25秒前
研友_nV2Kyn完成签到,获得积分10
26秒前
王冉冉发布了新的文献求助10
26秒前
铁甲小宝完成签到,获得积分10
27秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048