Computational Prediction of Human Disease- Associated circRNAs Based on Manifold Regularization Learning Framework

计算机科学 人工智能 正规化(语言学) 机器学习
作者
Qiu Xiao,Jiawei Luo,Jianhua Dai
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:23 (6): 2661-2669 被引量:72
标识
DOI:10.1109/jbhi.2019.2891779
摘要

The accumulating evidences regarding circular RNAs (circRNAs) indicate that they play crucial roles in a wide range of biological processes and participate in tumorigenesis and progression. The number of newly discovered circRNAs have increased dramatically in recent years, but the functions of vast majority of circRNAs remain unknown, and little effort has been devoted to discover disease-associated circRNAs on a large scale until now. With the advancement of high-throughput technology, the increasing availability of omics data has provided an unprecedented opportunity for prioritizing candidate circRNAs for diseases by computational models, which will contribute to exploring the pathogenesis of complex diseases at the circRNA level and provide promising applications in disease diagnosis and treatment. Here we propose the assumption that circRNAs with similar functions are normally associated with similar diseases and vice versa, and develop an integrated computational framework called MRLDC to identify disease-associated circRNAs. To our knowledge, little efforts have been developed for uncovering circRNA-disease associations on a large scale. By fully exploiting the experimentally validated associations between diseases and circRNAs, we first compute the Gaussian interaction profile kernel similarity for circRNAs and diseases, and then a heterogeneous circRNA-disease bilayer network is constructed by combining a circRNA similar network, a disease similar network, and known circRNA-disease associations. Subsequently, we develop a weighted low-rank approximation optimization algorithm with dual-manifold regularizations for predicting disease-associated circRNAs. Experimental results indicate that MRLDC can effectively identify disease circRNA candidates with high accuracy. In addition, case studies further demonstrate the ability of our method in discovering potential circRNA-disease associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助zgd采纳,获得10
刚刚
乌冬面发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
番茄爱喝粥完成签到,获得积分10
4秒前
4秒前
livian发布了新的文献求助10
4秒前
DL发布了新的文献求助10
5秒前
5秒前
言西早完成签到 ,获得积分10
6秒前
WWWUBING完成签到,获得积分10
6秒前
6秒前
红柚完成签到,获得积分10
8秒前
8秒前
李爱国应助tdtk采纳,获得10
8秒前
Lxxixixi发布了新的文献求助10
8秒前
刘凯完成签到,获得积分10
9秒前
科研通AI6应助yl采纳,获得10
9秒前
CR7应助乌冬面采纳,获得20
9秒前
9秒前
9秒前
小白发布了新的文献求助20
9秒前
10秒前
就这样完成签到 ,获得积分10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
11秒前
11秒前
zhazhalaoke应助科研通管家采纳,获得10
11秒前
zhazhalaoke应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
11秒前
思源应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
聪慧小霜应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604564
求助须知:如何正确求助?哪些是违规求助? 4012871
关于积分的说明 12425263
捐赠科研通 3693482
什么是DOI,文献DOI怎么找? 2036342
邀请新用户注册赠送积分活动 1069364
科研通“疑难数据库(出版商)”最低求助积分说明 953871