亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Computational Prediction of Human Disease- Associated circRNAs Based on Manifold Regularization Learning Framework

计算机科学 人工智能 正规化(语言学) 机器学习
作者
Qiu Xiao,Jiawei Luo,Jianhua Dai
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:23 (6): 2661-2669 被引量:72
标识
DOI:10.1109/jbhi.2019.2891779
摘要

The accumulating evidences regarding circular RNAs (circRNAs) indicate that they play crucial roles in a wide range of biological processes and participate in tumorigenesis and progression. The number of newly discovered circRNAs have increased dramatically in recent years, but the functions of vast majority of circRNAs remain unknown, and little effort has been devoted to discover disease-associated circRNAs on a large scale until now. With the advancement of high-throughput technology, the increasing availability of omics data has provided an unprecedented opportunity for prioritizing candidate circRNAs for diseases by computational models, which will contribute to exploring the pathogenesis of complex diseases at the circRNA level and provide promising applications in disease diagnosis and treatment. Here we propose the assumption that circRNAs with similar functions are normally associated with similar diseases and vice versa, and develop an integrated computational framework called MRLDC to identify disease-associated circRNAs. To our knowledge, little efforts have been developed for uncovering circRNA-disease associations on a large scale. By fully exploiting the experimentally validated associations between diseases and circRNAs, we first compute the Gaussian interaction profile kernel similarity for circRNAs and diseases, and then a heterogeneous circRNA-disease bilayer network is constructed by combining a circRNA similar network, a disease similar network, and known circRNA-disease associations. Subsequently, we develop a weighted low-rank approximation optimization algorithm with dual-manifold regularizations for predicting disease-associated circRNAs. Experimental results indicate that MRLDC can effectively identify disease circRNA candidates with high accuracy. In addition, case studies further demonstrate the ability of our method in discovering potential circRNA-disease associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助鲅鱼圈采纳,获得10
12秒前
14秒前
lzzz发布了新的文献求助10
21秒前
英喆完成签到 ,获得积分10
21秒前
我是老大应助畅快的毛衣采纳,获得10
36秒前
45秒前
47秒前
鲅鱼圈发布了新的文献求助10
50秒前
50秒前
Leofar完成签到 ,获得积分10
57秒前
58秒前
鲅鱼圈完成签到,获得积分10
1分钟前
h0jian09完成签到,获得积分10
1分钟前
BaooooooMao完成签到,获得积分10
1分钟前
愉快的犀牛完成签到 ,获得积分10
1分钟前
Sunny完成签到,获得积分10
2分钟前
yujie完成签到 ,获得积分10
2分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
2分钟前
西柚柠檬完成签到 ,获得积分10
3分钟前
心系天下完成签到 ,获得积分10
3分钟前
Alex-Song完成签到 ,获得积分0
3分钟前
不秃燃的小老弟完成签到 ,获得积分10
4分钟前
4分钟前
Owen应助科研通管家采纳,获得10
4分钟前
年年有余完成签到,获得积分10
5分钟前
胖小羊完成签到 ,获得积分10
5分钟前
6分钟前
领导范儿应助科研通管家采纳,获得10
6分钟前
7分钟前
juan完成签到 ,获得积分10
8分钟前
学术小垃圾完成签到,获得积分10
8分钟前
叁月二完成签到 ,获得积分10
8分钟前
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
大模型应助科研通管家采纳,获得10
8分钟前
xingsixs完成签到 ,获得积分10
9分钟前
AprilLeung完成签到 ,获得积分10
10分钟前
10分钟前
深情安青应助科研通管家采纳,获得10
10分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990423
求助须知:如何正确求助?哪些是违规求助? 3532158
关于积分的说明 11256513
捐赠科研通 3271046
什么是DOI,文献DOI怎么找? 1805207
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234