Computational Prediction of Human Disease- Associated circRNAs Based on Manifold Regularization Learning Framework

计算机科学 人工智能 正规化(语言学) 机器学习
作者
Qiu Xiao,Jiawei Luo,Jianhua Dai
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:23 (6): 2661-2669 被引量:72
标识
DOI:10.1109/jbhi.2019.2891779
摘要

The accumulating evidences regarding circular RNAs (circRNAs) indicate that they play crucial roles in a wide range of biological processes and participate in tumorigenesis and progression. The number of newly discovered circRNAs have increased dramatically in recent years, but the functions of vast majority of circRNAs remain unknown, and little effort has been devoted to discover disease-associated circRNAs on a large scale until now. With the advancement of high-throughput technology, the increasing availability of omics data has provided an unprecedented opportunity for prioritizing candidate circRNAs for diseases by computational models, which will contribute to exploring the pathogenesis of complex diseases at the circRNA level and provide promising applications in disease diagnosis and treatment. Here we propose the assumption that circRNAs with similar functions are normally associated with similar diseases and vice versa, and develop an integrated computational framework called MRLDC to identify disease-associated circRNAs. To our knowledge, little efforts have been developed for uncovering circRNA-disease associations on a large scale. By fully exploiting the experimentally validated associations between diseases and circRNAs, we first compute the Gaussian interaction profile kernel similarity for circRNAs and diseases, and then a heterogeneous circRNA-disease bilayer network is constructed by combining a circRNA similar network, a disease similar network, and known circRNA-disease associations. Subsequently, we develop a weighted low-rank approximation optimization algorithm with dual-manifold regularizations for predicting disease-associated circRNAs. Experimental results indicate that MRLDC can effectively identify disease circRNA candidates with high accuracy. In addition, case studies further demonstrate the ability of our method in discovering potential circRNA-disease associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
axiba完成签到,获得积分10
刚刚
正在通话中完成签到,获得积分10
1秒前
Silverexile完成签到,获得积分10
1秒前
浮云发布了新的文献求助10
1秒前
Kikisong完成签到,获得积分10
1秒前
2秒前
Chandler完成签到,获得积分10
2秒前
Sepstar完成签到,获得积分10
2秒前
Green完成签到,获得积分10
2秒前
MZ完成签到,获得积分10
3秒前
小马甲应助KAKA采纳,获得10
3秒前
mingkle应助tanghong采纳,获得20
3秒前
Jasper应助池不胖采纳,获得10
3秒前
朴实雨竹完成签到,获得积分10
4秒前
科研通AI2S应助心动采纳,获得10
4秒前
叶听枫发布了新的文献求助20
5秒前
王雨薇应助高高笑白采纳,获得10
5秒前
5秒前
5秒前
超级绫完成签到 ,获得积分10
6秒前
脑洞疼应助青菜采纳,获得10
6秒前
诸嚣发布了新的文献求助10
6秒前
chen完成签到,获得积分10
6秒前
感恩的心完成签到,获得积分10
6秒前
zhangyuan发布了新的文献求助10
7秒前
路内里发布了新的文献求助10
7秒前
熬夜的桃子完成签到,获得积分10
7秒前
152455发布了新的文献求助10
8秒前
张倩完成签到,获得积分10
8秒前
144完成签到 ,获得积分10
8秒前
冯冯完成签到 ,获得积分10
9秒前
修勾完成签到,获得积分10
9秒前
cheryl发布了新的文献求助10
10秒前
exome完成签到,获得积分10
10秒前
南宫书瑶完成签到,获得积分10
10秒前
10秒前
EwhenQ完成签到,获得积分10
10秒前
fdhineodobh花开富贵完成签到,获得积分10
10秒前
pengnanhao完成签到,获得积分10
10秒前
Hazel完成签到 ,获得积分10
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151089
求助须知:如何正确求助?哪些是违规求助? 2802543
关于积分的说明 7848537
捐赠科研通 2459877
什么是DOI,文献DOI怎么找? 1309380
科研通“疑难数据库(出版商)”最低求助积分说明 628897
版权声明 601757