荧光
碳量子点
制作
量子点
纳米技术
兴奋剂
多巴胺
碳纤维
材料科学
化学
光电子学
物理
复合数
光学
医学
内分泌学
病理
复合材料
替代医学
作者
Shujuan Zhuo,Yuanyuan Guan,Hui Li,Jing Fang,Ping Zhang,Jinyan Du,Changqing Zhu
出处
期刊:Analyst
[The Royal Society of Chemistry]
日期:2018-11-12
卷期号:144 (2): 656-662
被引量:93
摘要
In this paper, we have presented a novel strategy to fabricate Fe-doped carbon quantum dots (Fe-CQDs) for dopamine sensing applications. The Fe-CQDs are obtained by one step hydrothermal carbonization, using ethylenediamine tetraacetic acid salts and ferric nitrate as the carbon and iron source, which simultaneously incorporates Fe (dopamine-bonding site) and luminescent carbon quantum dots (fluorophores). The added dopamine containing catechol groups might form complexes with Fe ions (doped in CQDs) due to coordination. Subsequently, dopamine was oxidized to generate dopamine-quinone (a known potent electron acceptor) species by ambient O2. Thus, the coordination induced dopamine in proximity to the CQDs, which provided favourable electron acceptors in close proximity to the CQDs and produced high quenching efficiencies. Such fluorescence responses can be used for well quantifying dopamine in the range of 0.01-50 μM with a detection limit of 5 nM (S/N = 3). The proposed sensing system has been successfully used for the assay of dopamine in human urine samples. Preliminary cell image study indicates that the obtained Fe-CQDs possess high photostability and low cytotoxicity, which make them promising for biological applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI