Joint Optimization of Caching, Computing, and Radio Resources for Fog-Enabled IoT Using Natural Actor–Critic Deep Reinforcement Learning

计算机科学 强化学习 回程(电信) 马尔可夫决策过程 分布式计算 无线接入网 无线网络 最优化问题 计算卸载 云计算 计算机网络 Lyapunov优化 无线 边缘计算 人工智能 马尔可夫过程 基站 电信 统计 Lyapunov重新设计 操作系统 数学 李雅普诺夫指数 移动台 混乱的 算法
作者
Yifei Wei,F. Richard Yu,Mei Song,Zhu Han
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:6 (2): 2061-2073 被引量:276
标识
DOI:10.1109/jiot.2018.2878435
摘要

The cloud-based Internet of Things (IoT) develops rapidly but suffer from large latency and backhaul bandwidth requirement, the technology of fog computing and caching has emerged as a promising paradigm for IoT to provide proximity services, and thus reduce service latency and save backhaul bandwidth. However, the performance of the fog-enabled IoT depends on the intelligent and efficient management of various network resources, and consequently the synergy of caching, computing, and communications becomes the big challenge. This paper simultaneously tackles the issues of content caching strategy, computation offloading policy, and radio resource allocation, and propose a joint optimization solution for the fog-enabled IoT. Since wireless signals and service requests have stochastic properties, we use the actor-critic reinforcement learning framework to solve the joint decision-making problem with the objective of minimizing the average end-to-end delay. The deep neural network (DNN) is employed as the function approximator to estimate the value functions in the critic part due to the extremely large state and action space in our problem. The actor part uses another DNN to represent a parameterized stochastic policy and improves the policy with the help of the critic. Furthermore, the Natural policy gradient method is used to avoid converging to the local maximum. Using the numerical simulations, we demonstrate the learning capacity of the proposed algorithm and analyze the end-to-end service latency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iNk应助哈哈恬采纳,获得20
1秒前
zhoujunjie完成签到,获得积分10
2秒前
Rain完成签到,获得积分10
2秒前
3秒前
黎云完成签到,获得积分10
4秒前
6秒前
6秒前
无花果应助aaaaaa采纳,获得10
7秒前
8秒前
8秒前
勤劳的涑发布了新的文献求助10
10秒前
evilbatuu发布了新的文献求助10
10秒前
敏感板栗发布了新的文献求助30
10秒前
11秒前
爆米花应助sss采纳,获得10
11秒前
11秒前
坚定凝安完成签到,获得积分10
11秒前
哈哈发布了新的文献求助10
11秒前
123完成签到,获得积分10
13秒前
根号三完成签到,获得积分10
13秒前
科目三应助dental采纳,获得10
14秒前
小黄完成签到,获得积分10
15秒前
15秒前
16秒前
积极的笙发布了新的文献求助10
16秒前
JW完成签到,获得积分10
16秒前
wink发布了新的文献求助10
17秒前
852应助sian采纳,获得10
18秒前
18秒前
Apollo完成签到,获得积分10
18秒前
20秒前
20秒前
iNk应助JJSmith采纳,获得20
20秒前
21秒前
21秒前
小黄发布了新的文献求助200
22秒前
evilbatuu完成签到,获得积分10
22秒前
23秒前
24秒前
sss发布了新的文献求助10
24秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962670
求助须知:如何正确求助?哪些是违规求助? 3508680
关于积分的说明 11142146
捐赠科研通 3241403
什么是DOI,文献DOI怎么找? 1791539
邀请新用户注册赠送积分活动 872935
科研通“疑难数据库(出版商)”最低求助积分说明 803517