明胶
脚手架
化学
牙髓干细胞
染色
碱性磷酸酶
组织工程
生物医学工程
生物化学
体外
生物
遗传学
医学
酶
作者
Haiyue Yu,Xiaoyi Zhang,Wenjing Song,Ting Pan,He Wang,Tingting Ning,Wei Qin,Hockin H.K. Xu,Buling Wu,Dandan Ma
标识
DOI:10.1016/j.joen.2019.03.004
摘要
Alginate/gelatin hydrogel (Alg-Gel) scaffold has been applied in tissue engineering, but the research on its application in dental tissues regeneration is still lacking. We investigated the effect of this scaffold on human dental pulp stem cells (hDPSCs).hDPSCs were cultured in both Alg-Gel and 3D-printed Alg-Gel scaffolds. Cell growth and adhesion were compared using fluorescein isothiocyanate-phalloidin staining and scanning electron microscopic micrographs. Changes in the proliferation in hDPSCs cultured in the complete culture medium containing aqueous extracts of the Alg-Gel or 3D-printed Alg-Gel scaffolds were examined using Cell Counting Kit-8 assay and flow cytometry analysis. Cells were cultured in the mineralization medium containing aqueous extracts of the Alg-Gel or 3D-printed Alg-Gel scaffolds for 7 or 14 days, and the differentiation of cells was shown by alizarin red S staining and alkaline phosphatase staining. The messenger RNA and protein expression of mineralization-related genes were detected with real-time polymerase chain reaction and Western blotting. Elemental analysis was used to test the material extract composition.More cells were grown and adhered to the 3D-printed Alg-Gel scaffolds than the Alg-Gel scaffolds. The aqueous extracts of 3D-printed scaffolds can promote cell proliferation, and compared with Alg-Gel scaffolds, the extracts of 3D-printed scaffolds were more effective. Compared with the negative control group, 3D-printed Alg-Gel scaffold and Alg-Gel scaffold aqueous extracts promoted osteogenic/odontoblastic differentiation of hDPSCs with the enhanced formation of bone-like nodules and the alkaline phosphatase staining. The expression of mineralization-related genes was also up-regulated. 3D-printed scaffold aqueous extract contained more calcium and phosphorus ions than the Alg-Gel scaffold.These findings suggest that compared with the Alg-Gel scaffold, 3D-printed Alg-Gel is more suitable for the growth of hDPSCs, and the scaffold extracts can better promote cell proliferation and differentiation.
科研通智能强力驱动
Strongly Powered by AbleSci AI