水稻
砷
根际
化学
亚砷酸盐
遗传算法
水稻
砷酸盐
植物
环境化学
园艺
生物
生物化学
遗传学
有机化学
进化生物学
细菌
基因
作者
Angelia L. Seyfferth,Samuel M. Webb,Joy C. Andrews,Scott Fendorf
摘要
Arsenic contamination of rice is widespread, but the rhizosphere processes influencing arsenic attenuation remain unresolved. In particular, the formation of Fe plaque around rice roots is thought to be an important barrier to As uptake, but the relative importance of this mechanism is not well characterized. Here we elucidate the colocalization of As species and Fe on rice roots with variable Fe coatings; we used a combination of techniques--X-ray fluorescence imaging, μXANES, transmission X-ray microscopy, and tomography--for this purpose. Two dominant As species were observed in fine roots-inorganic As(V) and As(III) -with minor amounts of dimethylarsinic acid (DMA) and arsenic trisglutathione (AsGlu(3)). Our investigation shows that variable Fe plaque formation affects As entry into rice roots. In roots with Fe plaque, As and Fe were strongly colocated around the root; however, maximal As and Fe were dissociated and did not encapsulate roots that had minimal Fe plaque. Moreover, As was not exclusively associated with Fe plaque in the rice root system; Fe plaque does not coat many of the young roots or the younger portion of mature roots. Young, fine roots, important for solute uptake, have little to no iron plaque. Thus, Fe plaque does not directly intercept (and hence restrict) As supply to and uptake by rice roots but rather serves as a bulk scavenger of As predominantly near the root base.
科研通智能强力驱动
Strongly Powered by AbleSci AI