Inventory Pooling Under Heavy-Tailed Demand

报童模式 联营 安全库存 库存(枪支) 库存控制 存货理论 经济 背景(考古学) 库存管理 计算机科学 运筹学 计量经济学 运营管理 数学 供应链 业务 生物 工程类 古生物学 人工智能 机械工程 营销
作者
Kostas Bimpikis,Mihalis G. Markakis
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:62 (6): 1800-1813 被引量:76
标识
DOI:10.1287/mnsc.2015.2204
摘要

Risk pooling has been studied extensively in the operations management literature as the basic driver behind strategies such as transshipment, manufacturing flexibility, component commonality, and drop shipping. This paper explores the benefit of risk pooling in the context of inventory management using the canonical model first studied in Eppen [Eppen GD (1979) Effects of centralization on expected costs in a multi-location newsboy problem. Management Sci. 25(5):498–501]. Specifically, we consider a single-period, multilocation newsvendor model, where n different locations face independent and identically distributed demands and linear holding and backorder costs. We show that Eppen’s celebrated result, i.e., that the expected cost savings from centralized inventory management scale with the square root of the number of locations, depends critically on the “light-tailed” nature of the demand uncertainty. In particular, we establish that the benefit from pooling relative to the decentralized case, in terms of both expected cost and safety stock, is equal to n (α–1)/α for a class of heavy-tailed demand distributions (stable distributions), whose power-law asymptotic decay rate is determined by the parameter α ∈ (1, 2). Thus, the benefit from pooling under heavy-tailed demand uncertainty can be significantly lower than [Formula: see text], which is predicted for normally distributed demands. We discuss the implications of this result on the performance of periodic-review policies in multiperiod inventory management, as well as for the profits associated with drop-shipping fulfillment strategies. Corroborated by an extensive simulation analysis with heavy-tailed distributions that arise frequently in practice, such as power law and log normal, our findings highlight the importance of taking into account the shape of the tail of demand uncertainty when considering a risk pooling initiative. This paper was accepted by Serguei Netessine, operations management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助初之采纳,获得10
刚刚
te发布了新的文献求助10
刚刚
边港洋完成签到,获得积分10
2秒前
2秒前
凤羽发布了新的文献求助10
3秒前
灵巧听露发布了新的文献求助10
3秒前
可爱的函函应助猫猫无敌采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
7秒前
爆米花应助刁弘睿采纳,获得10
7秒前
7秒前
7秒前
缥缈海云完成签到,获得积分10
7秒前
8秒前
斯文败类应助沙场秋点兵采纳,获得10
9秒前
123完成签到,获得积分10
9秒前
10秒前
无辜问玉发布了新的文献求助10
10秒前
10秒前
11秒前
谨慎乐安发布了新的文献求助10
11秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
缥缈海云发布了新的文献求助10
14秒前
mylaodao发布了新的文献求助10
14秒前
15秒前
chen完成签到,获得积分10
16秒前
拾贰月发布了新的文献求助10
16秒前
俊杰完成签到,获得积分10
17秒前
阿菜完成签到,获得积分10
17秒前
wanghao完成签到,获得积分20
17秒前
善学以致用应助songjiatian采纳,获得10
18秒前
19秒前
19秒前
善学以致用应助追忆淮采纳,获得10
20秒前
Hello应助靓丽凝海采纳,获得10
20秒前
20秒前
毛笑冉完成签到,获得积分10
20秒前
fine发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425