POPC公司
化学
膜
等温滴定量热法
分子动力学
结晶学
脂质双层
磷脂酰甘油
核磁共振波谱
生物物理学
磷脂
磷脂酰胆碱
立体化学
生物化学
计算化学
生物
作者
Kristina Witte,Bjoern E.S. Olausson,Astrid Walrant,Isabel D. Alves,Alexander Vogel
标识
DOI:10.1016/j.bbamem.2012.11.014
摘要
Cell penetrating peptides (CPPs) are able to cross membranes without using receptors but only little information about the underlying mechanism is available. In this work, we investigate the interaction of the two arginine-rich CPPs RW9 and RL9 with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG), and POPC/POPG membranes with varying POPG content using isothermal titration calorimetry (ITC), solid-state nuclear magnetic resonance (NMR) spectroscopy, and molecular dynamics (MD) simulations. Both peptides were derived from the known CPP penetratin and it was shown previously that RW9 is able to penetrate membranes better than RL9. Overall, the results show that both RW9 and RL9 have a relatively small influence on the membrane. They increase the order of the lipids in the headgroup region and reduce order in the acyl chains indicating that they are located in the lipid/water interface. In addition, the flexibility of the membrane is slightly increased by both peptides but RW9 has a larger influence than RL9. The differences observed in the influences on POPC and POPG as well as MD simulations on the mixed POPC/POPG bilayers of 850 ns length each show that both peptides preferentially associate with and enrich the charged PG lipids almost 2fold in an area of 12 Å around the peptides. As expected, we could not observe any membrane crossing on the simulation time scale of 850 ns but observed that some peptides flipped their orientation during binding to the membrane. Interestingly, all observed flips coincided with structural changes in the peptides indicating that structural changes or flexibility might play a role during the binding of arginine-rich CPPs to membranes.
科研通智能强力驱动
Strongly Powered by AbleSci AI