Malignant Glioma Physiology: Cellular Response to Hypoxia and Its Role in Tumor Progression

医学 胶质瘤 缺氧(环境) 肿瘤进展 肿瘤缺氧 癌症研究 细胞生理学 生理学 病理 内科学 癌症 放射治疗 细胞 遗传学 生物 有机化学 化学 氧气
作者
Daniel J. Brat,Timothy B. Mapstone
出处
期刊:Annals of Internal Medicine [American College of Physicians]
卷期号:138 (8): 659-659 被引量:100
标识
DOI:10.7326/0003-4819-138-8-200304150-00014
摘要

Reviews15 April 2003Malignant Glioma Physiology: Cellular Response to Hypoxia and Its Role in Tumor ProgressionDaniel J. Brat, MD, PhD and Timothy B. Mapstone, MDDaniel J. Brat, MD, PhDFrom Emory University School of Medicine, Atlanta, Georgia.Search for more papers by this author and Timothy B. Mapstone, MDFrom Emory University School of Medicine, Atlanta, Georgia.Search for more papers by this authorAuthor, Article, and Disclosure Informationhttps://doi.org/10.7326/0003-4819-138-8-200304150-00014 SectionsAboutFull TextPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinkedInRedditEmail Clinical PrinciplesMalignant gliomas occur primarily in patients 40 to 70 years of age.Clinical presentation depends on tumor location and can include headache, seizures, or mental status changes.Age, functional status at presentation, and seizures are important predictors of outcome.Therapeutic options include aggressive surgery, but since resection alone is not often curative, adjunctive therapy is warranted.Patients with glioblastoma multiforme have a median survival of 50 weeks.Pathophysiologic PrinciplesMicrovascular proliferation in glioblastoma multiforme is a form of angiogenesis associated with neoplastic progression.Vascular proliferation is often noted in hypoxic regions associated with necrosis and is due at least in part to hypoxia-inducible factormediated expression of ...References1. Cavenee WK, Furnari FB, Nagane M, Huang HJ, Newcombe EW, Bigner DD, . Diffusely infiltrating astrocytomas.. In: Kleihues P, Cavenee WK, eds. Pathology and Genetics of Tumours of the Nervous System. 2nd ed. Lyon: International Agency for Research; 2000:10-21. Google Scholar2. Burger PC, Scheithauer BW, Vogel FS. Surgical Pathology of the Nervous System and Its Coverings. 4th ed. New York: Churchill Livingstone; 2002. Google Scholar3. Statistical Report: Primary Brain Tumors in the United States, 19921997. Chicago: Central Brain Tumor Registry of the United States; 2000. Google Scholar4. Bernstein M, Berger MS. Neuro-Oncology: The Essentials. New York: Thieme Medical Publishers; 2001. Google Scholar5. Folkman J. What is the evidence that tumors are angiogenesis dependent? [Editorial]. J Natl Cancer Inst. 1990;82:4-6. [PMID: 1688381] CrossrefMedlineGoogle Scholar6. Brat DJ, Castellano-Sanchez A, Kaur B, Van Meir EG. Genetic and biologic progression in astrocytomas and their relation to angiogenic dysregulation. Adv Anat Pathol. 2002;9:24-36. [PMID: 11756757] CrossrefMedlineGoogle Scholar7. Brat DJ, Van Meir EG. Glomeruloid microvascular proliferation orchestrated by VPF/VEGF: a new world of angiogenesis research. Am J Pathol. 2001;158:789-96. [PMID: 11238026] CrossrefMedlineGoogle Scholar8. Wesseling P, Schlingemann RO, Rietveld FJ, Link M, Burger PC, Ruiter DJ. Early and extensive contribution of pericytes/vascular smooth muscle cells to microvascular proliferation in glioblastoma multiforme: an immuno-light and immuno-electron microscopic study. J Neuropathol Exp Neurol. 1995;54:304-10. [PMID: 7745429] CrossrefMedlineGoogle Scholar9. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407:249-57. [PMID: 11001068] CrossrefMedlineGoogle Scholar10. Dvorak HF. VPF/VEGF and the angiogenic response. Semin Perinatol. 2000;24:75-8. [PMID: 10709865] CrossrefMedlineGoogle Scholar11. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983;219:983-5. [PMID: 6823562] CrossrefMedlineGoogle Scholar12. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86:353-64. [PMID: 8756718] CrossrefMedlineGoogle Scholar13. Plate KH, Breier G, Weich HA, Risau W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature. 1992;359:845-8. [PMID: 1279432] CrossrefMedlineGoogle Scholar14. Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992;359:843-5. [PMID: 1279431] CrossrefMedlineGoogle Scholar15. Semenza GL. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med. 2001;7:345-50. [PMID: 11516994] CrossrefMedlineGoogle Scholar16. Maxwell PH, Pugh CW, Ratcliffe PJ. Activation of the HIF pathway in cancer. Curr Opin Genet Dev. 2001;11:293-9. [PMID: 11377966] CrossrefMedlineGoogle Scholar17. Takano S, Yoshii Y, Kondo S, Suzuki H, Maruno T, Shirai S, . Concentration of vascular endothelial growth factor in the serum and tumor tissue of brain tumor patients. Cancer Res. 1996;56:2185-90. [PMID: 8616870] MedlineGoogle Scholar18. Zagzag D, Zhong H, Scalzitti JM, Laughner E, Simons JW, Semenza GL. Expression of hypoxia-inducible factor 1alpha in brain tumors: association with angiogenesis, invasion, and progression. Cancer. 2000;88:2606-18. [PMID: 10861440] CrossrefMedlineGoogle Scholar19. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995;92:5510-4. [PMID: 7539918] CrossrefMedlineGoogle Scholar20. Kallio PJ, Okamoto K, O'Brien S, Carrero P, Makino Y, Tanaka H, . Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1alpha. EMBO J. 1998;17:6573-86. [PMID: 9822602] CrossrefMedlineGoogle Scholar21. Lal A, Peters H, St Croix B, Haroon ZA, Dewhirst MW, Strausberg RL, . Transcriptional response to hypoxia in human tumors. J Natl Cancer Inst. 2001;93:1337-43. [PMID: 11535709] CrossrefMedlineGoogle Scholar22. Huang LE, Gu J, Schau M, Bunn HF. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A. 1998;95:7987-92. [PMID: 9653127] CrossrefMedlineGoogle Scholar23. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, . The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399:271-5. [PMID: 10353251] CrossrefMedlineGoogle Scholar24. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, . HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292:464-8. [PMID: 11292862] CrossrefMedlineGoogle Scholar25. Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science. 2002;295:858-61. [PMID: 11823643] CrossrefMedlineGoogle Scholar26. Mahon PC, Hirota K, Semenza GL. FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev. 2001;15:2675-86. [PMID: 11641274] CrossrefMedlineGoogle Scholar27. Hewitson KS, McNeill LA, Riordan MV, Tian YM, Bullock AN, Welford RW, . Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J Biol Chem. 2002;277:26351-5. [PMID: 12042299] CrossrefMedlineGoogle Scholar28. Jiang BH, Zheng JZ, Aoki M, Vogt PK. Phosphatidylinositol 3-kinase signaling mediates angiogenesis and expression of vascular endothelial growth factor in endothelial cells. Proc Natl Acad Sci U S A. 2000;97:1749-53. [PMID: 10677529] CrossrefMedlineGoogle Scholar29. von Deimling A, von Ammon K, Schoenfeld D, Wiestler OD, Seizinger BR, Louis DN. Subsets of glioblastoma multiforme defined by molecular genetic analysis. Brain Pathol. 1993;3:19-26. [PMID: 8269081] CrossrefMedlineGoogle Scholar30. Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK, . Malignant glioma: genetics and biology of a grave matter. Genes Dev. 2001;15:1311-33. [PMID: 11390353] CrossrefMedlineGoogle Scholar31. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2000;103:211-25. [PMID: 11057895] CrossrefMedlineGoogle Scholar32. Frederick L, Wang XY, Eley G, James CD. Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res. 2000;60:1383-7. [PMID: 10728703] MedlineGoogle Scholar33. Clarke K, Smith K, Gullick WJ, Harris AL. Mutant epidermal growth factor receptor enhances induction of vascular endothelial growth factor by hypoxia and insulin-like growth factor-1 via a PI3 kinase dependent pathway. Br J Cancer. 2001;84:1322-9. [PMID: 11355942] CrossrefMedlineGoogle Scholar34. Maity A, Pore N, Lee J, Solomon D, O'Rourke DM. Epidermal growth factor receptor transcriptionally up-regulates vascular endothelial growth factor expression in human glioblastoma cells via a pathway involving phosphatidylinositol 3-kinase and distinct from that induced by hypoxia. Cancer Res. 2000;60:5879-86. [PMID: 11059786] MedlineGoogle Scholar35. Fleming TP, Saxena A, Clark WC, Robertson JT, Oldfield EH, Aaronson SA, . Amplification and/or overexpression of platelet-derived growth factor receptors and epidermal growth factor receptor in human glial tumors. Cancer Res. 1992;52:4550-3. [PMID: 1322795] MedlineGoogle Scholar36. Wang D, Huang HJ, Kazlauskas A, Cavenee WK. Induction of vascular endothelial growth factor expression in endothelial cells by platelet-derived growth factor through the activation of phosphatidylinositol 3-kinase. Cancer Res. 1999;59:1464-72. [PMID: 10197615] MedlineGoogle Scholar37. Franke TF, Yang SI, Chan TO, Datta K, Kazlauskas A, Morrison DK, . The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell. 1995;81:727-36. [PMID: 7774014] CrossrefMedlineGoogle Scholar38. Chen EY, Mazure NM, Cooper JA, Giaccia AJ. Hypoxia activates a platelet-derived growth factor receptor/phosphatidylinositol 3-kinase/Akt pathway that results in glycogen synthase kinase-3 inactivation. Cancer Res. 2001;61:2429-33. [PMID: 11289110] MedlineGoogle Scholar39. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, . PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997;275:1943-7. [PMID: 9072974] CrossrefMedlineGoogle Scholar40. Cantley LC, Neel BG. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci U S A. 1999;96:4240-5. [PMID: 10200246] CrossrefMedlineGoogle Scholar41. Zundel W, Schindler C, Haas-Kogan D, Koong A, Kaper F, Chen E, . Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev. 2000;14:391-6. [PMID: 10691731] MedlineGoogle Scholar42. Fulci G, Ishii N, Van Meir EG. p53 and brain tumors: from gene mutations to gene therapy. Brain Pathol. 1998;8:599-613. [PMID: 9804370] CrossrefMedlineGoogle Scholar43. Van Meir EG, Kikuchi T, Tada M, Li H, Diserens AC, Wojcik BE, . Analysis of the p53 gene and its expression in human glioblastoma cells. Cancer Res. 1994;54:649-52. [PMID: 8306326] MedlineGoogle Scholar44. Reifenberger G, Liu L, Ichimura K, Schmidt EE, Collins VP. Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res. 1993;53:2736-9. [PMID: 8504413] MedlineGoogle Scholar45. Nakamura M, Watanabe T, Klangby U, Asker C, Wiman K, Yonekawa Y, . p14ARF deletion and methylation in genetic pathways to glioblastomas. Brain Pathol. 2001;11:159-68. [PMID: 11303791] CrossrefMedlineGoogle Scholar46. Bouvet M, Ellis LM, Nishizaki M, Fujiwara T, Liu W, Bucana CD, . Adenovirus-mediated wild-type p53 gene transfer down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in human colon cancer. Cancer Res. 1998;58:2288-92. [PMID: 9622060] MedlineGoogle Scholar47. An WG, Kanekal M, Simon MC, Maltepe E, Blagosklonny MV, Neckers LM. Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha. Nature. 1998;392:405-8. [PMID: 9537326] CrossrefMedlineGoogle Scholar48. Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q, . Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev. 2000;14:34-44. [PMID: 10640274] MedlineGoogle Scholar49. Bubien JK, Keeton DA, Fuller CM, Gillespie GY, Reddy AT, Mapstone TB, . Malignant human gliomas express an amiloride-sensitive Na+ conductance. Am J Physiol. 1999;276:C1405-10. [PMID: 10362604] CrossrefMedlineGoogle Scholar50. Berdiev BK, Mapstone TB, Markert JM, Gillespie GY, Lockhart J, Fuller CM, . pH alterations reset Ca2+ sensitivity of brain Na+ channel 2, a degenerin/epithelial Na+ ion channel, in planar lipid bilayers. J Biol Chem. 2001;276:38755-61. [PMID: 11514582] CrossrefMedlineGoogle Scholar51. Berdiev BK, Xia J, McLean LA, Markert JM, Gillespie GY, Mapstone TB, . Acid-sensing ion channels in malignant gliomas. J Biol Chem. 2003;. CrossrefMedlineGoogle Scholar52. Cairncross JG, Ueki K, Zlatescu MC, Lisle DK, Finkelstein DM, Hammond RR, . Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst. 1998;90:1473-9. [PMID: 9776413] CrossrefMedlineGoogle Scholar53. de Bono JS, Rowinsky EK. The ErbB receptor family: a therapeutic target for cancer. Trends Mol Med. 2002;8:S19-26. [PMID: 11927283] CrossrefMedlineGoogle Scholar54. Kerbel RS, Viloria-Petit A, Okada F, Rak J. Establishing a link between oncogenes and tumor angiogenesis. Mol Med. 1998;4:286-95. [PMID: 9642680] CrossrefMedlineGoogle Scholar55. Hirata A, Ogawa S, Kometani T, Kuwano T, Naito S, Kuwano M, . ZD1839 (Iressa) induces antiangiogenic effects through inhibition of epidermal growth factor receptor tyrosine kinase. Cancer Res. 2002;62:2554-60. [PMID: 11980649] MedlineGoogle Scholar56. Mabjeesh NJ, Post DE, Willard MT, Kaur B, Van Meir EG, Simons JW, . Geldanamycin induces degradation of hypoxia-inducible factor 1alpha protein via the proteosome pathway in prostate cancer cells. Cancer Res. 2002;62:2478-82. [PMID: 11980636] MedlineGoogle Scholar57. Post DE, Van Meir EG. Generation of bidirectional hypoxia/HIF-responsive expression vectors to target gene expression to hypoxic cells. Gene Ther. 2001;8:1801-7. [PMID: 11803400] CrossrefMedlineGoogle Scholar58. Oosthuyse B, Moons L, Storkebaum E, Beck H, Nuyens D, Brusselmans K, . Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet. 2001;28:131-8. [PMID: 11381259] CrossrefMedlineGoogle Scholar Author, Article, and Disclosure InformationAffiliations: From Emory University School of Medicine, Atlanta, Georgia.For definition of terms used, see Glossary.Disclosures: None disclosed.Corresponding Author: Daniel J. Brat, MD, PhD, Department of Pathology and Laboratory Medicine, Emory University Hospital, H-176, 1364 Clifton Road NE, Atlanta, GA 30322; e-mail, [email protected]edu.Current Author Addresses: Dr. Brat: Department of Pathology and Laboratory Medicine, Emory University Hospital, H-176, 1364 Clifton Road NE, Atlanta, GA 30322.Dr. Mapstone: Emory University, 1365B Clifton Road, Atlanta, GA 30322. PreviousarticleNextarticle Advertisement FiguresReferencesRelatedDetailsSee AlsoPhysiology in Medicine: A New Series in Annals of Internal Medicine Harold C. Sox , Dennis Ausiello , Dale Benos , and Paul Epstein Correction: Malignant Glioma Physiology Metrics Cited ByMultiscale modeling of glioma pseudopalisades: contributions from the tumor microenvironmentHypoxic glioma-derived exosomes promote M2-like macrophage polarization by enhancing autophagy inductionRole of Polymeric Local Drug Delivery in Multimodal Treatment of Malignant Glioma: A ReviewBiomimetic potential of cerium oxide nanoparticles in modulating the metabolic gene signature in GBM-derived cell linesHypoxic glioma-derived exosomes deliver microRNA-1246 to induce M2 macrophage polarization by targeting TERF2IP via the STAT3 and NF-κB pathwaysMedicinal Chemistry of Boron-Bearing Compounds for BNCT- Glioma Treatment: Current Challenges and PerspectivesHypoxia-inducible factor 2α: a novel target in gliomasCorrelation of dynamic contrast-enhanced MRI derived volume transfer constant with histological angiogenic markers in high-grade gliomasMetabolic Alterations in Cancer Cells and the Emerging Role of Oncometabolites as Drivers of Neoplastic ChangeA Rationale for Targeting Extracellular Regulated Kinases ERK1 and ERK2 in GlioblastomaExtracellular Vesicles As Modulators of Tumor Microenvironment and Disease Progression in GliomaNon-standard radiotherapy fractionations delay the time to malignant transformation of low-grade gliomasInvestigation of hypoxia conditions using oxygen-enhanced magnetic resonance imaging measurements in glioma modelsRelationship between Apparent Diffusion Coefficients and MR Spectroscopy Findings in High-Grade GliomasFAT1 is a novel upstream regulator of HIF1α and invasion of high grade gliomaDevelopment and characterization of a microfluidic model of the tumour microenvironmentRole of vincristine in the inhibition of angiogenesis in glioblastomaA Hypoxia-Targeted Boron Neutron Capture Therapy Agent for the Treatment of GliomaMetabolic reprogramming in glioblastoma: the influence of cancer metabolism on epigenetics and unanswered questionsApplication of Dynamic Contrast-Enhanced MRI Parameters for Differentiating Squamous Cell Carcinoma and Malignant Lymphoma of the OropharynxTumor Microenvironment, Hypoxia, and Stem Cell-Related Radiation ResistanceTargeted Therapies in Brain Tumours: An OverviewHeparin in malignant glioma: review of preclinical studies and clinical resultsRNA interference targeting hypoxia-inducible factor 1α via a novel multifunctional surfactant attenuates glioma growth in an intracranial mouse modelHypoxic signature of microRNAs in glioblastoma: insights from small RNA deep sequencingHypoxia-inducible factor–1 and associated upstream and downstream proteins in the pathophysiology and management of glioblastomaPrognosis Prediction of Measurable Enhancing Lesion after Completion of Standard Concomitant Chemoradiotherapy and Adjuvant Temozolomide in Glioblastoma Patients: Application of Dynamic Susceptibility Contrast Perfusion and Diffusion-Weighted ImagingGBM's multifaceted landscape: highlighting regional and microenvironmental heterogeneityCell type-specific reciprocal regulation of HIF1A gene expression is dependent on 5′- and 3′-UTRsPreoperative dynamic contrast-enhanced MRI correlates with molecular markers of hypoxia and vascularity in specific areas of intratumoral microenvironment and is predictive of patient outcomeThe Role of Chemoattractant Receptors in Shaping the Tumor MicroenvironmentThe Bmi-1/NF-κB/VEGF story: another hint for proteasome involvement in glioma angiogenesis?The prospective application of a hypoxic radiosensitizer, doranidazole to rat intracranial glioblastoma with blood brain barrier disruptionRole of vascular endothelial progenitor cells in construction of new vascular loopThe expression of hypoxia-inducible factor-1 in primary brain tumorsPhenotypical Differences in Connective Tissue Cells Emerging from Microvascular Pericytes in Response to Overexpression of PDGF-B and TGF-β1 in Normal Skin in VivoMultifunctional protein APPL2 contributes to survival of human glioma cellsPyruvate Dehydrogenase Kinase as a Potential Therapeutic Target for Malignant GliomasHypoxia and hypoxia-inducible factors in glioblastoma multiforme progression and therapeutic implicationsHyperoxia resensitizes chemoresistant human glioblastoma cells to temozolomideImaging the Impact of Nox4 in Cycling Hypoxia-mediated U87 Glioblastoma Invasion and InfiltrationHypoxia Moderates γ134.5-Deleted Herpes Simplex Virus Oncolytic Activity in Human Glioma Xenoline Primary CulturesAssessment of Response to TherapyEpilepsy associated with brain tumorsNADPH Oxidase Subunit 4-Mediated Reactive Oxygen Species Contribute to Cycling Hypoxia-Promoted Tumor Progression in Glioblastoma MultiformeAberrant Signaling Pathways in GliomaAngiogenesis and invasion in gliomaCombined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgeryThe IGFR1 inhibitor NVP-AEW541 disrupts a pro-survival and pro-angiogenic IGF-STAT3-HIF1 pathway in human glioblastoma cellsCarboplatin and etoposide combined with bevacizumab for the treatment of recurrent glioblastoma multiformeMetronomic administration of the drug GMX1777, a cellular NAD synthesis inhibitor, results in neuroblastoma regression and vessel maturation without inducing drug resistanceTrial Design Strategies for Vascular-Targeted Therapy of Patients with Ovarian CancerBrain tumors and epilepsy: pathophysiology of peritumoral changesBrain tumor hypoxia: tumorigenesis, angiogenesis, imaging, pseudoprogression, and as a therapeutic targetTrial Design Strategies for Vascular-Targeted Therapy of Patients with Ovarian CancerDownregulating FPR restrains xenograft tumors by impairing the angiogenic potential and invasive capability of malignant glioma cellsIntegrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasisHypoxia in Brain TumorsVaso-occlusive Mechanisms that Intiate Hypoxia and Necrosis in Glioblastoma: The Role of Thrombosis and Tissue FactorMolecular Biology of Malignant GliomasGenome-Wide Oligonucleotide Microarray Analysis of Gene-Expression Profiles of Taiwanese Patients with Anaplastic Astrocytoma and Glioblastoma MultiformeHypoxia-regulated protein expression, patient characteristics, and preoperative imaging as predictors of survival in adults with glioblastoma multiformeDiagnosis of malignant glioma: role of neuropathologyExpression of hypoxia inducible factor-1α in tumors of patients with glioblastoma multiforme and transitional meningiomaRESEARCH ARTICLE: Intravascular Thrombosis in Central Nervous System Malignancies: A Potential Role in Astrocytoma Progression to GlioblastomaAnaplastic astrocytomas: biology and treatmentLRRC4 inhibits glioblastoma cell proliferation, migration, and angiogenesis by downregulating pleiotropic cytokine expression and responsesCancer of the Central Nervous SystemGliomagenesis and neural stem cells: Key role of hypoxia and concept of tumor “neo-niche”Hypoxia: A key regulator of angiogenesis in cancerSurvival and invasiveness of astrocytomas promoted by erythropoietinTumor Hypoxia and Prognosis in Human GliomasGlioblastoma multiforme: advances in postsurgical managementEarly Growth Response Gene-1 Regulates Hypoxia-Induced Expression of Tissue Factor in Glioblastoma Multiforme through Hypoxia-Inducible Factor-1–Independent Mechanisms‘Pseudopalisading’ Necrosis in Glioblastoma: A Familiar Morphologic Feature That Links Vascular Pathology, Hypoxia, and AngiogenesisHypoxia in the tumorigenesis of gliomas and as a potential target for therapeutic measuresHypoxia Inducible Factor 1-α Regulates of Platelet Derived Growth Factor-B in Human Glioblastoma CellsInterleukin-8 Differentially Regulates Migration of Tumor-Associated and Normal Human Brain Endothelial CellsPTEN and Hypoxia Regulate Tissue Factor Expression and Plasma Coagulation by GlioblastomaHypoxia Is Important in the Biology and Aggression of Human Glial Brain TumorsNovel chemotherapeutic agents for the treatment of glioblastoma multiformeCorrection: Malignant Glioma PhysiologyPhysiology in Medicine: A New Series in Annals of Internal MedicineHarold C. Sox, MD, Editor, Dennis Ausiello, MD, Dale Benos, PhD, and Paul Epstein, MD, Deputy EditorThermo-Chemo-Radiotherapy Association 15 April 2003Volume 138, Issue 8Page: 659-668KeywordsAngiogenesisAstrocytomaCellsEstimated glomerular filtration rateGene expressionGlioblastoma multiformeGliomaHypoxiaProteolysisVascular endothelial growth factor ePublished: 15 April 2003 Issue Published: 15 April 2003 CopyrightCopyright © 2003 by American College of Physicians. All Rights Reserved.PDF DownloadLoading ...

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高兴小熊猫完成签到,获得积分10
刚刚
英俊的铭应助科研通管家采纳,获得10
3秒前
13秒前
不会学习的小郭完成签到 ,获得积分10
20秒前
uwu完成签到 ,获得积分10
24秒前
xzx完成签到 ,获得积分10
32秒前
翁雁丝完成签到 ,获得积分10
33秒前
www完成签到,获得积分10
41秒前
小杰发布了新的文献求助10
43秒前
zhangy559完成签到 ,获得积分10
47秒前
nusiew完成签到,获得积分10
1分钟前
小马甲应助Murphy采纳,获得30
1分钟前
西兰花的科研小助手完成签到 ,获得积分10
1分钟前
奈思完成签到 ,获得积分10
1分钟前
patrick完成签到 ,获得积分10
1分钟前
Pride完成签到 ,获得积分10
1分钟前
失眠的蓝完成签到,获得积分10
1分钟前
小王完成签到 ,获得积分10
1分钟前
qing完成签到 ,获得积分10
1分钟前
璐璐完成签到 ,获得积分10
1分钟前
1分钟前
开心的短靴完成签到 ,获得积分10
1分钟前
李嘉图的栗子完成签到,获得积分10
1分钟前
niko发布了新的文献求助30
1分钟前
磊磊完成签到,获得积分10
2分钟前
yyy完成签到 ,获得积分10
2分钟前
2分钟前
昭歆钰完成签到 ,获得积分10
2分钟前
scarlet完成签到 ,获得积分10
2分钟前
songf11完成签到,获得积分10
2分钟前
zhongying完成签到 ,获得积分10
2分钟前
阿分完成签到,获得积分10
2分钟前
jying完成签到,获得积分10
2分钟前
SPLjoker完成签到,获得积分10
2分钟前
fay1987完成签到,获得积分10
2分钟前
阿分发布了新的文献求助10
2分钟前
yyh218完成签到,获得积分10
2分钟前
2分钟前
李爱国应助tangyu采纳,获得20
2分钟前
yrheong发布了新的文献求助10
2分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162378
求助须知:如何正确求助?哪些是违规求助? 2813350
关于积分的说明 7899832
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316556
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142