材料科学
光电子学
非阻塞I/O
晶体管
氧化物
制作
非易失性存储器
图层(电子)
X射线光电子能谱
二极管
异质结
溅射
纳米技术
薄膜
电气工程
化学工程
冶金
电压
医学
生物化学
化学
替代医学
病理
工程类
催化作用
作者
Myoung‐Jae Lee,Sun I. Kim,Chang B. Lee,Huaxiang Yin,Seung‐Eon Ahn,Bo Soo Kang,Ki H. Kim,Jae C. Park,Chang J. Kim,Ihun Song,Sang Woon Kim,Г. Б. Стефанович,Jung H. Lee,Seok J. Chung,Yeon H. Kim,Youngsoo Park
标识
DOI:10.1002/adfm.200801032
摘要
Abstract An effective stacked memory concept utilizing all‐oxide‐based device components for future high‐density nonvolatile stacked structure data storage is developed. GaInZnO (GIZO) thin‐film transistors, grown at room temperature, are integrated with one‐diode (CuO/InZnO)–one‐resistor (NiO) (1D–1R) structure oxide storage node elements, fabricated at room temperature. The low growth temperatures and fabrication methods introduced in this paper allow the demonstration of a stackable memory array as well as integrated device characteristics. Benefits provided by low‐temperature processes are demonstrated by fabrication of working devices over glass substrates. Here, the device characteristics of each individual component as well as the characteristics of a combined select transistor with a 1D–1R cell are reported. X‐ray photoelectron spectroscopy analysis of a NiO resistance layer deposited by sputter and atomic layer deposition confirms the importance of metallic Ni content in NiO for bi‐stable resistance switching. The GIZO transistor shows a field‐effect mobility of 30 cm 2 V −1 s −1 , a V th of +1.2 V, and a drain current on/off ratio of up to 10 8 , while the CuO/InZnO heterojunction oxide diode has forward current densities of 2 × 10 4 A cm −2 . Both of these materials show the performance of state‐of‐the‐art oxide devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI