Validation of existing clinical prediction models for patients with solitary pulmonary nodules (SPN) managed by a lung multi-disciplinary team (MDT)

医学 恶性肿瘤 十分位 肺癌 接收机工作特性 试验前后概率 放射科 统计 内科学 数学
作者
Purnima Malhotra,Natasha Lovell,Paul Plant,Shishir Karthik,Andrew Scarsbrook,Matthew Callister
出处
期刊:European Respiratory Journal 卷期号:38: 4435-
摘要

Background: Management of patients with SPNs depends critically on the pre-test probability of malignancy. There are currently two clinical predictions models for SPNs based on data from North America. However, these models have not been validated in UK patients, in particular those managed by a Lung MDT. Objective: To validate two existing clinical prediction models in patients with SPNs managed by the Lung MDT at a large teaching hospital. Methods: 175 patients with SPNs measuring 8–30 mm managed by the Lung MDT over 3 years (2007-2009) were identified retrospectively through the institutional Lung Cancer database. Data on age, smoking, cancer history, nodule size, location, spiculation, and final diagnosis was collected. Each case9s final diagnosis was compared with the probability of malignancy predicted by two models: the Mayo Clinic model and the Veteran Affairs (VA) one. The accuracy of each model was assessed by calculating areas under the receiver operating characteristic (ROC) curve and the models were calibrated by comparing predicted and observed rates of malignancy. Results: The area under the ROC curve for the Mayo model (0.832; 95% CI 0.753-0.911) was higher than that of the VA model (0.739; 95% CI 0.641-0.838). Calibration curves showed that both models slightly underestimated the probability of malignancy for patients across all deciles of predicted probabilities, except for those with highest probability of malignancy, where the VA model slightly overestimated probability. Conclusions: The two existing prediction models are sufficiently accurate to guide management of patients with SPNs managed by a Lung MDT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Arthur完成签到 ,获得积分10
2秒前
Janet_Jing完成签到 ,获得积分10
2秒前
ncwgx完成签到,获得积分10
3秒前
斯文败类应助了尘采纳,获得10
3秒前
4秒前
5秒前
SHD完成签到 ,获得积分10
5秒前
5秒前
5秒前
充电宝应助三杠采纳,获得10
6秒前
10秒前
乐观蚂蚁完成签到 ,获得积分10
11秒前
清爽的胡萝卜完成签到 ,获得积分10
11秒前
互助遵法尚德应助青苔采纳,获得10
13秒前
山茶发布了新的文献求助10
13秒前
13秒前
典雅涵瑶完成签到,获得积分10
14秒前
14秒前
打打应助adeno采纳,获得10
15秒前
晚灯君完成签到 ,获得积分10
16秒前
17秒前
Hello应助冷月芳华采纳,获得10
17秒前
草木完成签到,获得积分10
17秒前
夏木完成签到 ,获得积分10
18秒前
yimuchenlin发布了新的文献求助10
18秒前
18秒前
19秒前
小高同学发布了新的文献求助10
19秒前
科目三应助大方的觅海采纳,获得30
20秒前
雅丽发布了新的文献求助10
21秒前
张硕士发布了新的文献求助10
22秒前
抹茶拿铁加奶砖完成签到 ,获得积分10
22秒前
24秒前
24秒前
无奈醉柳完成签到,获得积分10
25秒前
杨玄完成签到 ,获得积分10
26秒前
26秒前
飞云完成签到 ,获得积分10
27秒前
康康米其林应助chemlixy采纳,获得10
27秒前
Lucas应助小高同学采纳,获得10
28秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162623
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900768
捐赠科研通 2473078
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631468
版权声明 602175