清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Validation of existing clinical prediction models for patients with solitary pulmonary nodules (SPN) managed by a lung multi-disciplinary team (MDT)

医学 恶性肿瘤 十分位 肺癌 接收机工作特性 试验前后概率 放射科 统计 内科学 数学
作者
Purnima Malhotra,Natasha Lovell,Paul Plant,Shishir Karthik,Andrew Scarsbrook,Matthew Callister
出处
期刊:European Respiratory Journal 卷期号:38: 4435-
摘要

Background: Management of patients with SPNs depends critically on the pre-test probability of malignancy. There are currently two clinical predictions models for SPNs based on data from North America. However, these models have not been validated in UK patients, in particular those managed by a Lung MDT. Objective: To validate two existing clinical prediction models in patients with SPNs managed by the Lung MDT at a large teaching hospital. Methods: 175 patients with SPNs measuring 8–30 mm managed by the Lung MDT over 3 years (2007-2009) were identified retrospectively through the institutional Lung Cancer database. Data on age, smoking, cancer history, nodule size, location, spiculation, and final diagnosis was collected. Each case9s final diagnosis was compared with the probability of malignancy predicted by two models: the Mayo Clinic model and the Veteran Affairs (VA) one. The accuracy of each model was assessed by calculating areas under the receiver operating characteristic (ROC) curve and the models were calibrated by comparing predicted and observed rates of malignancy. Results: The area under the ROC curve for the Mayo model (0.832; 95% CI 0.753-0.911) was higher than that of the VA model (0.739; 95% CI 0.641-0.838). Calibration curves showed that both models slightly underestimated the probability of malignancy for patients across all deciles of predicted probabilities, except for those with highest probability of malignancy, where the VA model slightly overestimated probability. Conclusions: The two existing prediction models are sufficiently accurate to guide management of patients with SPNs managed by a Lung MDT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
6秒前
量子星尘发布了新的文献求助10
32秒前
40秒前
Sunny完成签到,获得积分10
44秒前
三年三班三井寿完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
oleskarabach完成签到,获得积分20
1分钟前
oleskarabach发布了新的文献求助10
1分钟前
1分钟前
华仔应助科研通管家采纳,获得10
2分钟前
2分钟前
糯米糍发布了新的文献求助10
2分钟前
SYLH应助oleskarabach采纳,获得10
2分钟前
yingying完成签到,获得积分20
2分钟前
2分钟前
小蘑菇应助古月采纳,获得10
2分钟前
领导范儿应助Mr采纳,获得10
3分钟前
naczx完成签到,获得积分0
3分钟前
3分钟前
Mr发布了新的文献求助10
3分钟前
3分钟前
古月发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
下午好完成签到 ,获得积分10
3分钟前
003完成签到,获得积分10
3分钟前
zzhui完成签到,获得积分10
3分钟前
3分钟前
黑球发布了新的文献求助10
3分钟前
xiaozou55完成签到 ,获得积分10
3分钟前
3分钟前
黑球完成签到,获得积分10
3分钟前
3分钟前
不是山谷完成签到,获得积分10
4分钟前
4分钟前
4分钟前
逺山長发布了新的文献求助10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953501
求助须知:如何正确求助?哪些是违规求助? 3498943
关于积分的说明 11093377
捐赠科研通 3229545
什么是DOI,文献DOI怎么找? 1785524
邀请新用户注册赠送积分活动 869430
科研通“疑难数据库(出版商)”最低求助积分说明 801462