Validation of existing clinical prediction models for patients with solitary pulmonary nodules (SPN) managed by a lung multi-disciplinary team (MDT)

医学 恶性肿瘤 十分位 肺癌 接收机工作特性 试验前后概率 放射科 统计 内科学 数学
作者
Purnima Malhotra,Natasha Lovell,Paul Plant,Shishir Karthik,Andrew Scarsbrook,Matthew Callister
出处
期刊:European Respiratory Journal 卷期号:38: 4435-
摘要

Background: Management of patients with SPNs depends critically on the pre-test probability of malignancy. There are currently two clinical predictions models for SPNs based on data from North America. However, these models have not been validated in UK patients, in particular those managed by a Lung MDT. Objective: To validate two existing clinical prediction models in patients with SPNs managed by the Lung MDT at a large teaching hospital. Methods: 175 patients with SPNs measuring 8–30 mm managed by the Lung MDT over 3 years (2007-2009) were identified retrospectively through the institutional Lung Cancer database. Data on age, smoking, cancer history, nodule size, location, spiculation, and final diagnosis was collected. Each case9s final diagnosis was compared with the probability of malignancy predicted by two models: the Mayo Clinic model and the Veteran Affairs (VA) one. The accuracy of each model was assessed by calculating areas under the receiver operating characteristic (ROC) curve and the models were calibrated by comparing predicted and observed rates of malignancy. Results: The area under the ROC curve for the Mayo model (0.832; 95% CI 0.753-0.911) was higher than that of the VA model (0.739; 95% CI 0.641-0.838). Calibration curves showed that both models slightly underestimated the probability of malignancy for patients across all deciles of predicted probabilities, except for those with highest probability of malignancy, where the VA model slightly overestimated probability. Conclusions: The two existing prediction models are sufficiently accurate to guide management of patients with SPNs managed by a Lung MDT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一一完成签到,获得积分10
1秒前
orixero应助Champ采纳,获得10
1秒前
一点完成签到 ,获得积分0
1秒前
ZYN完成签到 ,获得积分10
3秒前
搜集达人应助永远的阿科采纳,获得20
4秒前
SYLH应助蔡从安采纳,获得10
4秒前
6秒前
照镜子丫dorime完成签到,获得积分10
8秒前
奉雨眠完成签到,获得积分10
8秒前
埋头苦干科研完成签到,获得积分10
9秒前
闫栋完成签到 ,获得积分10
9秒前
稳重的秋天完成签到,获得积分20
11秒前
11秒前
坐雨赏花完成签到 ,获得积分10
11秒前
文献狗完成签到,获得积分10
11秒前
DMMM完成签到,获得积分10
12秒前
day_on完成签到,获得积分10
12秒前
车非笑完成签到,获得积分10
12秒前
13秒前
玛卡巴卡发布了新的文献求助10
13秒前
王二哈完成签到,获得积分10
14秒前
芝麻福福完成签到,获得积分10
14秒前
曼夭非夭完成签到,获得积分10
15秒前
wang完成签到,获得积分10
16秒前
xue完成签到 ,获得积分10
16秒前
zhang完成签到,获得积分10
17秒前
17秒前
小啊刘呀发布了新的文献求助10
18秒前
俍璟完成签到 ,获得积分10
18秒前
cistronic完成签到,获得积分10
18秒前
薄荷草莓糖完成签到,获得积分10
19秒前
HCN完成签到,获得积分10
19秒前
兴奋的万声完成签到,获得积分10
19秒前
自由如天完成签到,获得积分10
20秒前
少女徐必成完成签到 ,获得积分10
21秒前
吕圆圆圆啊完成签到,获得积分10
22秒前
科目三应助承乐采纳,获得10
22秒前
向阳发布了新的文献求助10
22秒前
23秒前
Raki完成签到,获得积分10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950021
求助须知:如何正确求助?哪些是违规求助? 3495348
关于积分的说明 11076451
捐赠科研通 3225877
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867596
科研通“疑难数据库(出版商)”最低求助积分说明 800839