亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Validation of existing clinical prediction models for patients with solitary pulmonary nodules (SPN) managed by a lung multi-disciplinary team (MDT)

医学 恶性肿瘤 十分位 肺癌 接收机工作特性 试验前后概率 放射科 统计 内科学 数学
作者
Purnima Malhotra,Natasha Lovell,Paul Plant,Shishir Karthik,Andrew Scarsbrook,Matthew Callister
出处
期刊:European Respiratory Journal 卷期号:38: 4435-
摘要

Background: Management of patients with SPNs depends critically on the pre-test probability of malignancy. There are currently two clinical predictions models for SPNs based on data from North America. However, these models have not been validated in UK patients, in particular those managed by a Lung MDT. Objective: To validate two existing clinical prediction models in patients with SPNs managed by the Lung MDT at a large teaching hospital. Methods: 175 patients with SPNs measuring 8–30 mm managed by the Lung MDT over 3 years (2007-2009) were identified retrospectively through the institutional Lung Cancer database. Data on age, smoking, cancer history, nodule size, location, spiculation, and final diagnosis was collected. Each case9s final diagnosis was compared with the probability of malignancy predicted by two models: the Mayo Clinic model and the Veteran Affairs (VA) one. The accuracy of each model was assessed by calculating areas under the receiver operating characteristic (ROC) curve and the models were calibrated by comparing predicted and observed rates of malignancy. Results: The area under the ROC curve for the Mayo model (0.832; 95% CI 0.753-0.911) was higher than that of the VA model (0.739; 95% CI 0.641-0.838). Calibration curves showed that both models slightly underestimated the probability of malignancy for patients across all deciles of predicted probabilities, except for those with highest probability of malignancy, where the VA model slightly overestimated probability. Conclusions: The two existing prediction models are sufficiently accurate to guide management of patients with SPNs managed by a Lung MDT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平淡的衣完成签到,获得积分10
3秒前
NexusExplorer应助AXX041795采纳,获得10
10秒前
星星科语发布了新的文献求助10
10秒前
简单发布了新的文献求助20
11秒前
魔幻的芳完成签到,获得积分10
15秒前
SSY发布了新的文献求助10
15秒前
火星上的宝马完成签到,获得积分10
18秒前
平淡的衣发布了新的文献求助20
19秒前
20秒前
悲凉的忆南完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
25秒前
陈旧完成签到,获得积分10
25秒前
28秒前
28秒前
欣欣子完成签到,获得积分10
29秒前
虚拟的清炎完成签到 ,获得积分10
31秒前
sunstar完成签到,获得积分10
32秒前
XXXXXX发布了新的文献求助10
35秒前
yxl完成签到,获得积分10
36秒前
可耐的盈完成签到,获得积分10
39秒前
绿毛水怪完成签到,获得积分10
42秒前
yg发布了新的文献求助10
44秒前
lsc完成签到,获得积分10
46秒前
XXXXXX完成签到,获得积分10
48秒前
48秒前
星星科语完成签到,获得积分20
48秒前
小fei完成签到,获得积分10
50秒前
andrele发布了新的文献求助10
53秒前
麻辣薯条完成签到,获得积分10
53秒前
hanlin给滕祥的求助进行了留言
55秒前
时尚身影完成签到,获得积分10
57秒前
leoduo完成签到,获得积分0
1分钟前
ryx发布了新的文献求助10
1分钟前
流苏2完成签到,获得积分10
1分钟前
1分钟前
斯文败类应助科研通管家采纳,获得30
1分钟前
上官若男应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
绍华发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723656
求助须知:如何正确求助?哪些是违规求助? 5279993
关于积分的说明 15299011
捐赠科研通 4872033
什么是DOI,文献DOI怎么找? 2616484
邀请新用户注册赠送积分活动 1566311
关于科研通互助平台的介绍 1523187