亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Validation of existing clinical prediction models for patients with solitary pulmonary nodules (SPN) managed by a lung multi-disciplinary team (MDT)

医学 恶性肿瘤 十分位 肺癌 接收机工作特性 试验前后概率 放射科 统计 内科学 数学
作者
Purnima Malhotra,Natasha Lovell,Paul Plant,Shishir Karthik,Andrew Scarsbrook,Matthew Callister
出处
期刊:European Respiratory Journal 卷期号:38: 4435-
摘要

Background: Management of patients with SPNs depends critically on the pre-test probability of malignancy. There are currently two clinical predictions models for SPNs based on data from North America. However, these models have not been validated in UK patients, in particular those managed by a Lung MDT. Objective: To validate two existing clinical prediction models in patients with SPNs managed by the Lung MDT at a large teaching hospital. Methods: 175 patients with SPNs measuring 8–30 mm managed by the Lung MDT over 3 years (2007-2009) were identified retrospectively through the institutional Lung Cancer database. Data on age, smoking, cancer history, nodule size, location, spiculation, and final diagnosis was collected. Each case9s final diagnosis was compared with the probability of malignancy predicted by two models: the Mayo Clinic model and the Veteran Affairs (VA) one. The accuracy of each model was assessed by calculating areas under the receiver operating characteristic (ROC) curve and the models were calibrated by comparing predicted and observed rates of malignancy. Results: The area under the ROC curve for the Mayo model (0.832; 95% CI 0.753-0.911) was higher than that of the VA model (0.739; 95% CI 0.641-0.838). Calibration curves showed that both models slightly underestimated the probability of malignancy for patients across all deciles of predicted probabilities, except for those with highest probability of malignancy, where the VA model slightly overestimated probability. Conclusions: The two existing prediction models are sufficiently accurate to guide management of patients with SPNs managed by a Lung MDT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
打打应助温暖的夏波采纳,获得10
3秒前
HL773发布了新的文献求助10
6秒前
Jasper应助科研通管家采纳,获得10
32秒前
32秒前
Lyh发布了新的文献求助10
38秒前
碳酸芙兰完成签到,获得积分10
40秒前
吸尘器完成签到 ,获得积分10
46秒前
SunOSun完成签到 ,获得积分10
52秒前
54秒前
精明凡双完成签到,获得积分10
1分钟前
Nick_YFWS完成签到,获得积分10
1分钟前
1分钟前
苏苏完成签到 ,获得积分10
1分钟前
handsome完成签到 ,获得积分10
1分钟前
大胆的碧菡完成签到,获得积分10
1分钟前
1分钟前
桔梗发布了新的文献求助10
1分钟前
DING完成签到 ,获得积分10
1分钟前
1分钟前
思源应助桔梗采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
qpp完成签到,获得积分10
1分钟前
桐桐应助咸鱼lmye采纳,获得10
1分钟前
情怀应助围城采纳,获得10
2分钟前
2分钟前
ding应助DD0066采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
Siwen发布了新的文献求助10
2分钟前
突突leolo发布了新的文献求助10
2分钟前
2分钟前
2分钟前
流星雨完成签到 ,获得积分10
2分钟前
2分钟前
平平无奇小天才完成签到,获得积分10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4983161
求助须知:如何正确求助?哪些是违规求助? 4234564
关于积分的说明 13189220
捐赠科研通 4026686
什么是DOI,文献DOI怎么找? 2202837
邀请新用户注册赠送积分活动 1215158
关于科研通互助平台的介绍 1131953